• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Linkage-Type Rowing Exercise Machines

Hsu, Fu-Ming 16 July 2002 (has links)
Rowing exercise machines are the popular fitness goods with training the whole body, warm-up, and stretching. They have the advantages of promoting cardiopulmonary function, training muscles, and burning calories. The purpose of this work is to develop a systematic design procedure for the linkage-type rowing exercise machines. First, to investigate and discuss the rowing exercise machines and the rowing motion to induce the requirements and design tasks of rowing exercise machines. Then the design targets of this research are decided further in order to establish the design specification. Second, to carry out the creative design of rowing exercise machines by using the procedure of creative mechanism design. Third, to complete the kinematic design of rowing exercise machines. Computer software is utilized for the work of dimensional synthesis and kinematic analysis. Finally, to perform the embodiment design and to establish 3-D model drawing of the design solutions.
2

Design and optimization of a one-degree-of-freedom eight-bar leg mechanism for a walking machine

Giesbrecht, Daniel 08 April 2010 (has links)
It has been established that legged, off-road vehicles exhibit better mobility, obtain higher energy efficiency and provide more comfortable movement than those of tracked or wheeled vehicles while moving on rough terrain. Previous studies on legged mechanism design were performed by selecting the length of each link by trial and error or by certain optimization techniques where only a static force analysis was performed due to the complexity of the mechanisms. We found that these techniques can be inefficient and inaccurate. In this paper, we present the design and the optimization of a single degree-of-freedom 8-bar legged walking mechanism. We design the leg using the mechanism design theory because it offers a greater control on the output motion. Furthermore, a dynamic force analysis is performed to determine the torque applied on the input link. The optimization is set up to achieve two objectives: i) to minimize the energy needed by the system and ii) to maximize the stride length. The kinematics and dynamics of the optimized leg mechanism are compared to the one by trial-and-error. It shows that large improvements to the performance of the leg mechanism can be achieved. A prototype of the walking mechanism with 6 legs is built to demonstrate the performance.
3

Design and optimization of a one-degree-of-freedom eight-bar leg mechanism for a walking machine

Giesbrecht, Daniel 08 April 2010 (has links)
It has been established that legged, off-road vehicles exhibit better mobility, obtain higher energy efficiency and provide more comfortable movement than those of tracked or wheeled vehicles while moving on rough terrain. Previous studies on legged mechanism design were performed by selecting the length of each link by trial and error or by certain optimization techniques where only a static force analysis was performed due to the complexity of the mechanisms. We found that these techniques can be inefficient and inaccurate. In this paper, we present the design and the optimization of a single degree-of-freedom 8-bar legged walking mechanism. We design the leg using the mechanism design theory because it offers a greater control on the output motion. Furthermore, a dynamic force analysis is performed to determine the torque applied on the input link. The optimization is set up to achieve two objectives: i) to minimize the energy needed by the system and ii) to maximize the stride length. The kinematics and dynamics of the optimized leg mechanism are compared to the one by trial-and-error. It shows that large improvements to the performance of the leg mechanism can be achieved. A prototype of the walking mechanism with 6 legs is built to demonstrate the performance.
4

Mechanical Design of the Legs for OLL-E, a Fully Self-Balancing, Lower-Body Exoskeleton

Wilson, Bradford Asin 11 September 2019 (has links)
Exoskeletons show great promise in aiding people in a wide range of applications. One such application is medical rehabilitation and assistance of those with spinal cord injuries. Exoskeletons have the potential to offer several benefits over wheelchairs, including a reduction in the risk of upper-body injuries associated with extended wheelchair use. To fully mitigate this risk of injury, exoskeletons will need to be fully self-balancing, able to move and stand without crutches or other walking aid. To accomplish this, the Orthotic Lower-body Locomotion Exoskeleton (OLL-E) will actuate 12 Degrees of Freedom, six in each leg, using custom design linear series elastic actuators. The placement of these actuators relative to each joint axis, and the geometry of the linkage connecting them, were critical to ensuring each joint was capable of producing the required outputs for self-balancing locomotion. In pursuit of this goal, a general model was developed, relating the actuator's position and linkage geometry to the actual joint output over its range of motion. This model was then adapted for each joint in the legs and compared against the required outputs for humans and robots moving through a variety of gaits. This process allowed for the best placement of the actuator and linkages within the design constraints of the exoskeleton. The structure of the exoskeleton was then designed to maintain the desired geometry while meeting several other design requirements such as weight, adjustability, and range of motion. Adjustability was a key factor for ensuring the comfortable use of the exoskeleton and to minimize risk of injury by aligning the exoskeleton joint axes as close as possible to the wearer's joints. The legs of OLL-E can accommodate users between 1.60 m and 2.03 m in height while locating the exoskeleton joint axes within 2 mm of the user's joints. After detailed design was completed, analysis showed that the legs met all long-term goals of the exoskeleton project. / Master of Science / Exoskeletons show great promise in aiding people in a wide range of applications. One such application is medical rehabilitation and assistance of those with spinal cord injuries. Exoskeletons have the potential to offer several benefits over wheelchairs, including a reduction in the risk of upper-body injuries associated with extended wheelchair use. To best reduce this risk of injury, exoskeletons will need to be fully self-balancing, able to move and stand without crutches or relying on any other outside structure to stay upright. To accomplish this, the Orthotic Lower-body Locomotion Exoskeleton (OLL-E) will use a set of custom designed motors to apply power and control to 12 joints, six in each leg. Where these motors were placed, and how they connect to the joints they control, were critical to ensuring the exoskeleton was able to self-balance, walk, and climb stairs. To find the correct position, a set of equations was developed to determine how different positions changed each joints’ speed, strength, and range of motion. These equations were then put into a piece of custom software that could quickly evaluate different joint layouts and compare the capabilities against measurements from people and robots walking, climbing stairs, and standing up out of a chair. This process allowed for the best placement of the motors and joints while still keeping the exoskeleton relatively compact. The rest of the exoskeleton was then designed to connect these joints together, while meeting several other design requirements such as weight, adjustability, and range of motion. Adjustability was very important for ensuring the comfortable use of the exoskeleton and to minimize risk of injury by ensuring that the exoskeleton legs closely matched the movements of the person inside. The legs of OLL-E can accommodate users between 1.60 m and 2.03 m in increments of 7 mm. After detailed design was completed, additional analyses were performed to check the strength of the structure and ensure it met other long-term goals of the project.

Page generated in 0.0611 seconds