• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression pattern of GPI-anchored non-specific lipid transfer proteins in Physcomitrella patens

Höglund, Andrey January 2011 (has links)
During the water-to-land transition, that occurred approximately 450 MYA, novel habitats wererevealed to the emerging plants. This terrestrial habitat was a harsh environment compared to theaquatic, with shifting substrate content, irregular supply of water, damaging UV-radiation andrapid fluctuating temperatures. Non-specific lipid transfer proteins (nsLTP) are today only foundin the land living plants and not in the green algae. This suggests that these genes might haveevolved to help the plants cope with the stressful conditions. In this study the expression patternhas been analysed of the nsLTPs in the moss Physcomitrella patens during the possible conditionsthat raised during the water-to-land transition. The moss was exposed to salt, UV-B, drought, copper, cold and osmotic stress. Quantitative real-time PCR was used to analyse the transcription levels. I found that six genes were upregulated during either cold, dehydration or UV-B stress. This suggest that these genes are involved in the plant defense against these abiotic stresse
2

Lipid-Transfer-Proteine aus Arabidopsis thaliana - physiologische und molekulare Funktionsanalyse

Jülke, Sabine 18 February 2013 (has links) (PDF)
Die durch den obligat biotrophen Protisten Plasmodiophora brassicae hervorgerufene Pflanzenkrankheit Kohlhernie verursacht weltweit hohe ökonomische Verluste. Bis heute gibt es keine effektiven Möglichkeiten, diese Pflanzenkrankheit zu bekämpfen. Eine Analyse der Genexpression in infizierten Wurzeln im Vergleich zu nicht infizierten Wurzeln ergab, dass die Gene für Lipid-Transfer-Proteine während der gesamten Krankheitsentwicklung differentiell reguliert sind. Über die Funktionen von Lipid-Transfer-Proteinen in Pflanzen wird noch spekuliert. Diskutiert wird dabei eine Funktion bei der Anpassung an verschiedene abiotische Stressfaktoren, bei der Pathogenabwehr sowie bei dem Transfer von Lipiden. In dieser Arbeit wurden transgene Pflanzen generiert, in denen die pathogenbedingte LTP-Genregulation umgekehrt ist. Es wurden transgene A. thaliana Pflanzen erzeugt, die die Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 überexprimieren und die Genexpression von AT4G33550 sowie AT1G62510 reprimieren. Die Regulation der LTP-Genexpression erfolgte dabei durch den wurzel- und keimlingsspezifischen Promotor Pyk10. Zusätzlich wurden in dieser Arbeit auch T-DNA-Insertionsmutanten für die Gene AT1G12090, AT2G18370, AT3G22620, AT5G05960, LTP3 sowie LTP4 untersucht. Mittels semiquantitativer Expressionsanalyse konnte die Modulation der LTP-Genexpression in den LTP-Mutanten bestätigt werden. Darüber hinaus konnte gezeigt werden, dass die Modulation der Expression eines LTP-Gens auch die Expression anderer LTP-Gene beeinflusst. Die phytopathologischen Analysen der LTP-Mutanten hinsichtlich der Entwicklung der Pflanzenkrankheit Kohlhernie ergab, dass die Überexpression der Gene LTP1, LTP3 sowie AT2G18370 und die Repression der Expression von AT1G62510 eine verringerte Anfälligkeit für diese Krankheit bewirkt. Die verstärkte Expression der Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 resultiert außerdem in einer verringerten Symptomentwicklung infolge einer Pseudomonas syringae-Infektion. Die verringerte Expression des Gens AT4G33550 führt hingegen zu einer größeren Anfälligkeit für eine P. brassicae Infektion; die Infektion mit P. syringae wird dadurch aber nicht beeinflusst. Die physiologische Charakterisierung der LTP-Mutanten umfasste die Analyse des Pflanzenwachstums unter Salzstress bzw. osmotischem Stress sowie die Entwicklung der Seneszenz in abgetrennten Rosettenblättern. Es konnte gezeigt werden, dass die Gene LTP1, LTP3, LTP4, AT4G33550 sowie AT1G62510 bei der Anpassung an Salzstress sowie die Gene LTP3, AT3G22620, AT4G33550 und AT1G62510 bei der Anpassung an osmotischen Stress eine Rolle spielen. Durch die Modulation der Expression der genannten Gene wird das Wachstum unter diesen Stressbedingungen sowohl positiv als auch negativ beeinflusst. Die Entwicklung der Seneszenz wird ebenfalls durch eine veränderte LTP-Genexpression (LTP1, LTP3, LTP4, AT3G22620 sowie AT4G33550) beeinflusst. Für die biochemische Charakterisierung wurden die LTP-Gene aus A. thaliana mit einem Fusionspartner in E. coli exprimiert und die resultierenden Fusionsproteine gereinigt. Diese wurden nach Abspalten des Fusionspartners hinsichtlich ihrer antimikrobiellen Aktivität und auf die Fähigkeit, Calmodulin zu binden, untersucht. Für die gereinigten Lipid-Transfer-Proteine LTP1, LTP3, LTP4, AT2G18370 sowie AT1G62510 konnte unter den bisher getesteten Versuchsbedingungen keine antimikrobielle Aktivität nachgewiesen werden. Für die Proteine LTP1, LTP3 und LTP4 konnte eine calciumunabhängige Calmodulin-Bindung nachgewiesen werden. Die Ergebnisse dieser Versuche ermöglichen keine Aussage bezüglich der genauen Funktion der einzelnen Lipid-Transfer-Proteine, geben aber Hinweise darauf, dass diese bei den entsprechenden Stress-Vorgängen eine Rolle spielen. Welche Funktion sie dabei genau erfüllen, muss in weiterführenden Analysen untersucht werden.
3

Characterization of SIP470, a Family 1 Lipid Transfer Protein and its Role in Plant Stress Signaling

Audam, Timothy Ndagi 01 August 2016 (has links)
SIP470, a putative tobacco lipid transfer protein, was identified in a yeast two-hybrid screen to interact with SABP2. SABP2 is a critical role in SA-mediated signaling in tobacco and other plants. In vitro studies using purified recombinant SIP470 confirmed that it is a lipid binding protein. In an attempt to determine its role in mediating stress responses, Arabidopsis T-DNA insertion knockout lines lacking SIP470 homolog were used for the analysis. These mutant plants were defective in basal resistance against microbial pathogens. Expression of defense gene PR-1 was also delayed in these mutant plants. Interestingly, these mutant plants were not defective in inducing systemic acquired resistance. Besides biotic stress, these mutant plants also showed increased susceptibility to abiotic stresses. To directly study the role of SIP470 in tobacco plants, transgenic tobacco lines, with reduced levels of SIP470 expression, were generated using RNAi and transgenic lines overexpressing SIP470 were also generated.
4

The Impact of Abiotic Stress on Alternative Splicing in Lipid Transfer Protein in Marchantia polymorpha

Fredén, Linnéa January 2018 (has links)
All plants have a protection against the surrounding environment called a cuticle coating. When this cuticle coating is constructed it is believed that the family of protein called lipid transfer proteins (LTPs) is involved. The LTPs are small and cysteine rich. In Marchantia polymorpha the groups of LTPs called LTPd and LTPg can be found. 8 and 4 in each group respectively. In the genes of LTPd there is an intron placed downstream of the start codon. Firstly, a sequence database search was performed and LTPd2 and LTPd3 were chosen for further experiments in this study. Secondly, a control that the intron was present in the samples were done by preforming a PCR reaction of cDNA from isolated RNA taken from untreated Marchantia polymorpha. A gel electrophoresis of the product was also performed. Lastly, the amount of alternative splicing in LTPd2 and LTPd3 from Marchantia polymorpha after treated with cold and dehydration were studied using quantitative PCR. For the qPCR MpACT and the exon of respective gene were used as references. The ΔCt values and the expression fold (2ΔΔCt) calculated from the qPCR results showed that most of the transcript with introns preserved were upregulated after subjected to stress. Only the intron in MpLTPd2 and MpLTPd3 with MpACT as reference showed a small downregulation after the cold treatment. The intron in MpLTPd3 with MpLTPd3s exon as reference didn’t show any difference. None of the intron transcript in any of the genes on the other hand showed any significant difference in the alternative splicing. This could be because of small sample groups when the test was performed. In conclusion, there were no significant difference in intron expression between treated and control samples. Therefore, nothing can be said about the change in alternative splicing in MpLTPds after cold and dehydration treatments.
5

Lipid-Transfer-Proteine aus Arabidopsis thaliana - physiologische und molekulare Funktionsanalyse

Jülke, Sabine 24 September 2012 (has links)
Die durch den obligat biotrophen Protisten Plasmodiophora brassicae hervorgerufene Pflanzenkrankheit Kohlhernie verursacht weltweit hohe ökonomische Verluste. Bis heute gibt es keine effektiven Möglichkeiten, diese Pflanzenkrankheit zu bekämpfen. Eine Analyse der Genexpression in infizierten Wurzeln im Vergleich zu nicht infizierten Wurzeln ergab, dass die Gene für Lipid-Transfer-Proteine während der gesamten Krankheitsentwicklung differentiell reguliert sind. Über die Funktionen von Lipid-Transfer-Proteinen in Pflanzen wird noch spekuliert. Diskutiert wird dabei eine Funktion bei der Anpassung an verschiedene abiotische Stressfaktoren, bei der Pathogenabwehr sowie bei dem Transfer von Lipiden. In dieser Arbeit wurden transgene Pflanzen generiert, in denen die pathogenbedingte LTP-Genregulation umgekehrt ist. Es wurden transgene A. thaliana Pflanzen erzeugt, die die Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 überexprimieren und die Genexpression von AT4G33550 sowie AT1G62510 reprimieren. Die Regulation der LTP-Genexpression erfolgte dabei durch den wurzel- und keimlingsspezifischen Promotor Pyk10. Zusätzlich wurden in dieser Arbeit auch T-DNA-Insertionsmutanten für die Gene AT1G12090, AT2G18370, AT3G22620, AT5G05960, LTP3 sowie LTP4 untersucht. Mittels semiquantitativer Expressionsanalyse konnte die Modulation der LTP-Genexpression in den LTP-Mutanten bestätigt werden. Darüber hinaus konnte gezeigt werden, dass die Modulation der Expression eines LTP-Gens auch die Expression anderer LTP-Gene beeinflusst. Die phytopathologischen Analysen der LTP-Mutanten hinsichtlich der Entwicklung der Pflanzenkrankheit Kohlhernie ergab, dass die Überexpression der Gene LTP1, LTP3 sowie AT2G18370 und die Repression der Expression von AT1G62510 eine verringerte Anfälligkeit für diese Krankheit bewirkt. Die verstärkte Expression der Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 resultiert außerdem in einer verringerten Symptomentwicklung infolge einer Pseudomonas syringae-Infektion. Die verringerte Expression des Gens AT4G33550 führt hingegen zu einer größeren Anfälligkeit für eine P. brassicae Infektion; die Infektion mit P. syringae wird dadurch aber nicht beeinflusst. Die physiologische Charakterisierung der LTP-Mutanten umfasste die Analyse des Pflanzenwachstums unter Salzstress bzw. osmotischem Stress sowie die Entwicklung der Seneszenz in abgetrennten Rosettenblättern. Es konnte gezeigt werden, dass die Gene LTP1, LTP3, LTP4, AT4G33550 sowie AT1G62510 bei der Anpassung an Salzstress sowie die Gene LTP3, AT3G22620, AT4G33550 und AT1G62510 bei der Anpassung an osmotischen Stress eine Rolle spielen. Durch die Modulation der Expression der genannten Gene wird das Wachstum unter diesen Stressbedingungen sowohl positiv als auch negativ beeinflusst. Die Entwicklung der Seneszenz wird ebenfalls durch eine veränderte LTP-Genexpression (LTP1, LTP3, LTP4, AT3G22620 sowie AT4G33550) beeinflusst. Für die biochemische Charakterisierung wurden die LTP-Gene aus A. thaliana mit einem Fusionspartner in E. coli exprimiert und die resultierenden Fusionsproteine gereinigt. Diese wurden nach Abspalten des Fusionspartners hinsichtlich ihrer antimikrobiellen Aktivität und auf die Fähigkeit, Calmodulin zu binden, untersucht. Für die gereinigten Lipid-Transfer-Proteine LTP1, LTP3, LTP4, AT2G18370 sowie AT1G62510 konnte unter den bisher getesteten Versuchsbedingungen keine antimikrobielle Aktivität nachgewiesen werden. Für die Proteine LTP1, LTP3 und LTP4 konnte eine calciumunabhängige Calmodulin-Bindung nachgewiesen werden. Die Ergebnisse dieser Versuche ermöglichen keine Aussage bezüglich der genauen Funktion der einzelnen Lipid-Transfer-Proteine, geben aber Hinweise darauf, dass diese bei den entsprechenden Stress-Vorgängen eine Rolle spielen. Welche Funktion sie dabei genau erfüllen, muss in weiterführenden Analysen untersucht werden.
6

Analysis of mass transfer in the emission of floral volatile organic compounds

Meng-Ling Shih (13945716) 14 October 2022 (has links)
<p>  </p> <p>Plants synthesize and release a variety of volatile organic compounds (VOCs) that are important for their reproduction, defense, and communication. These low-molecular-weight, lipophilic molecules also serve as practical products in industries such as food additives, fragrances, colorants, nutraceuticals, and pharmaceuticals. In addition, they have agricultural applications such as sustainable methods for pest control. Therefore, identifying the biological mechanisms involved in volatile emission could help researchers develop new ways to control the timing and release of volatiles, defend against pests, and engineer the production of these valuable chemicals.</p> <p>While progress has been made in understanding plant volatile biosynthesis, their release from the cell remains incomplete. For plant VOCs to be emitted into the environment, they must move from their site of biosynthesis through the cytosol, transverse the plasma membrane, hydrophilic cell wall, and sometimes cuticle to exit the cell. It was previously shown by mathematical modeling that to achieve observed emission rates solely by diffusion, VOCs would accumulate in the cellular membranes to levels that are likely detrimental to the membrane integrity and function. Hence, it was proposed that there are biological mechanisms involved to lower VOC concentrations in membranes. In this work, we focus on the aqueous cell wall, the thickest layer among the three subcellular barriers that should act as a barrier for the diffusion of VOCs. We hypothesize that the transport of VOCs across the cell wall is facilitated by lipid transfer proteins (LTPs) which enhance the solubility of hydrophobic volatiles in the aqueous environment, prevent their back partition into the plasma membrane after entering the cell wall, and hence enhance their net diffusion. To investigate if the presence of LTPs has influence on the total VOC efflux, we use reverse-genetic, biochemical, and mathematical modeling approaches. Out of three highly expressed LTPs identified in the petunia petal, only downregulation of <em>PhLTP3</em> expression led to a decrease in VOC emission in the corresponding transgenic plants. A facilitated diffusion model was built to quantify the VOC flux difference with the presence of LTPs in the cell wall. Modeling of the steady state system revealed the facilitation of VOC flux by LTPs is greatest when the VOC concentration gradient across the cell wall is shallow, which is a physiologically relevant condition. In addition, there exists an optimal protein dissociation constant value for maximal facilitated flux, indicating the balance between the binding and the unloading of VOC is critical. With the in vitro displacement assay, the binding constants of candidate PhLTPs with VOCs were obtained and were all found to be in the µM range, which is close to our model predicted optimal value. The results revealed that LTPs, specifically PhLTP3, play a role in the export of VOCs from the plasma membrane, across the cell wall, to the cuticle.</p> <p>In our earlier mathematical model, the emission of VOCs from the petunia flowers was modeled assuming negligible mass transfer resistance on the surface of the cuticle because of their high volatility. However, the resistance imposed by the surface boundary layer was not considered. To examine if surface convection influences VOC emission, a model system which utilized a model cuticular wax film containing 2-phenylethanol (2-PE) was built to imitate the VOC emission from plant cuticle. The convection mass transfer coefficient of 2-PE emission from a model cuticular wax film was obtained by experimental data fitting and calculated from the correlation that involves Sherwood number. The obtained values that were smaller than unity indicates that the surface boundary layer imposes a higher mass transfer resistance than the model cuticle for the emission of 2-PE in the range of wind velocities investigated. The examination of petunia flowers under air flow showed increases in total emission but no significant differences in total internal pools, which indicates an increase in biosynthesis. The emission changes of individual compounds were different and does not clearly correlate to any molecular properties of the compounds.  </p>
7

The Effects of Abiotic Stress on Alternative Splicing in Non-specific Lipid Transfer Proteins in Marchantia polymorpha

Ahlsén, Hanna January 2018 (has links)
Due to global warming, our planet will experience more extreme weather conditions. Plants can protect themselves against these abiotic stress conditions with their stress response, which includes alternative splicing of certain genes. Alternative splicing is a post-transcriptional process where a single gene gives rise to different mRNAs, which in turn produces different proteins. In plants, this is usually done by intron retention. One type of protein that may be involved in this stress response are the non-specific lipid transfer proteins (LTPs). Indeed, evidence of intron retention has been found in the LTP genes in the liverwort Marchantia polymorpha, called MpLTPd. To investigate whether this alternative splicing is caused by abiotic stress or not, I subjected the moss to two different types of stress trials, drought and cold, and compared the general expression of the intron in MpLTPd2 and MpLTPd3 from the stressed samples to samples from a moss grown under normal conditions. I found that the expression of the intron did change in the stressed moss, but none of the differences were significant. This suggests that alterative splicing in MpLTPd2 and MpLTPd3 is not caused by cold and drought and that the intron-containing protein plays no role in the protection of M. polymorpha against abiotic stress.

Page generated in 0.0901 seconds