• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel concepts for lipid identification from shotgun mass spectra using a customized query language

Herzog, Ronny 23 August 2012 (has links) (PDF)
Lipids are the main component of semipermeable cell membranes and linked to several important physiological processes. Shotgun lipidomics relies on the direct infusion of total lipid extracts from cells, tissues or organisms into the mass spectrometer and is a powerful tool to elucidate their molecular composition. Despite the technical advances in modern mass spectrometry the currently available software underperforms in several aspects of the lipidomics pipeline. This thesis addresses these issues by presenting a new concept for lipid identification using a customized query language for mass spectra in combination with efficient spectra alignment algorithms which are implemented in the open source kit “LipidXplorer”.
2

Novel concepts for lipid identification from shotgun mass spectra using a customized query language

Herzog, Ronny 30 May 2012 (has links)
Lipids are the main component of semipermeable cell membranes and linked to several important physiological processes. Shotgun lipidomics relies on the direct infusion of total lipid extracts from cells, tissues or organisms into the mass spectrometer and is a powerful tool to elucidate their molecular composition. Despite the technical advances in modern mass spectrometry the currently available software underperforms in several aspects of the lipidomics pipeline. This thesis addresses these issues by presenting a new concept for lipid identification using a customized query language for mass spectra in combination with efficient spectra alignment algorithms which are implemented in the open source kit “LipidXplorer”.

Page generated in 0.059 seconds