• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 68
  • 21
  • 20
  • 12
  • 8
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 269
  • 49
  • 38
  • 28
  • 26
  • 24
  • 24
  • 24
  • 21
  • 20
  • 20
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bedeutung der Lipopolysaccharidstrukturen bei pathogenen Vibrio-cholerae-Stämmen für die Ausbildung von Cholera und Abgrenzung zu Umweltisolaten

Schild, Stefan. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Würzburg.
12

MicroRNA regulation of macrophage activation

Hunter, Catriona Mhairi January 2017 (has links)
Macrophages are mononuclear phagocytic cells that have diverse roles within the body. Tissue specific macrophages, e.g. Kupffer cells, microglia and osteoclasts, have roles in tissue homeostasis, while circulating macrophages play an important role in the innate immune system. Macrophages detect the presence of pathogen associated molecular patterns (PAMPs) via a range of receptors known collectively as pathogen recognition receptors (PRRs). Detection of pathogens causes the macrophages to become ‘activated,’ during which the macrophages undergo extreme morphological and translational changes that enable the pathogen to be neutralised and other immune system components to be recruited. Macrophage activation must be carefully regulated and promptly resolved, as chronic inflammation is damaging to the host. MicroRNAs have emerged as one mechanism by which activation is regulated. MicroRNAs are small, non-coding pieces of RNA that function as a post-transcriptional regulatory mechanism. Their action is exerted through binding with a complementary region in the 3’ untranslated region (3’UTR) of the target mRNA. This binding, facilitated by the ribonuclear protein complex RISC, prevents successful translation of the mRNA into its protein product. MicroRNAs have been shown to function across species, throughout development and during the adult life-span. In the immune system, microRNAs are known to be required for correct formation of germinal centres and normal development of B- and T-cells. MicroRNAs have also been shown to be differentially regulated during macrophage activation with different stimuli. In particular, miR-155, miR-146a and miR-21 are associated with macrophage activation by lipopolysaccharide (LPS). The objective of this work was to further understand the role of microRNAs during macrophage activation with LPS. Two approaches were adopted. Firstly, the regulation of individual microRNAs in LPS-activated bone marrow derived macrophages (BMDMs) was characterised by the use of illumina small RNA sequencing. Secondly, the requirement of the global microRNA population during macrophage biology was investigated through the use of DGCR8 and Dicer knockout systems. In keeping with the large number of changes reported in mRNA translation upon activation, expression of >400 microRNAs were found to be differentially regulated by exposure to LPS. Twelve of these microRNAs were chosen for further study (miR- 142-3p, -146a, -15b, -155, -16, -191, -21, -27b, -30b, -322-5p, -378 and -7a). Individual knock-down of these microRNAs in the RAW264.7 macrophage-like cell line mostly demonstrated subtle, rather than dramatic changes to the activation marker genes studied by RT-QPCR analysis. However, knock-down of miR-146a, -15b, - 155 and -191 were able to significantly alter the expression of the activation marker genes (Tnf-a, Cox2, Cxcl2, Il-6 and Saa3). Interestingly, knock-down of miR-142-3p, miR-146a and miR-155 appeared to show cross-regulation of these microRNAs. The cell index (CI) data suggested that miR-191 and miR-21 influence adhesion in activated macrophages. Studies with the DGCR8 and Dicer knockout systems showed that the global microRNA population was required for successful differentiation of macrophages from embryonic stem cells, and for normal expression of differentiation and activation markers in bone marrow derived macrophages. Overall, these results show that dynamic expression of microRNAs is an integral part of the macrophage response to LPS.
13

Investigating Mitochondrial Choline Metabolism in Macrophages

Pember, Ciara 18 January 2023 (has links)
The essential nutrient choline is known to serve as a precursor for phospholipids and the neurotransmitter acetylcholine, and to feed into methylation pathways. The role and fate of choline in immune cells, however, is not yet fully elucidated. To act as a methyl group donor, choline must first undergo oxidation in mitochondria, a process which has long been thought to occur exclusively in the liver and kidney. The recent identification of choline transporters on the mitochondrial membrane has highlighted the possibility of mitochondrial choline oxidation in other cell types. Here, I show that choline transporters are present on the mitochondrial membrane of primary and immortalized mouse macrophages. The interaction of CTL2 with mitochondria is further augmented following pro-inflammatory polarization with the bacterial endotoxin lipopolysaccharide. I show that mitochondrial choline uptake occurs in macrophages using radiolabelled choline assays; however, it remains unclear whether this process is conducted through the identified transporters. Preliminary data suggest that mitochondrial choline oxidation to betaine was increased in LPS-stimulated macrophages, revealing a potential additional input into one-carbon metabolism in polarized macrophages. This project broadens the existing paradigm that choline oxidation occurs strictly in hepatic and renal tissue and suggests that choline oxidation may be a regulated process in macrophage polarization.
14

Inhibition of Bacterial Heptose synthesis

de Leon, Gladys 11 1900 (has links)
<p> Lipopolysaccharide (LPS) a major non-protein component of the outer membrane of Gram-negative bacteria, defines many of the host-bacterium interactions and provides an effective barrier by inhibiting diffusion of bile salts, detergents, and lipophilic antibiotics. The heptose molecule is an essential component of the bacterial LPS inner core and the synthesis of this subunit is an attractive antimicrobial target. A major challenge to exploit this pathway for antibiotic discoveries has been the unavailability of substrates. </p> <p> TktA, GmhA, HidE and GmhB proteins involved in the biosynthesis of the LPS precursor ADP-D-glycero-β-manno-heptose have been cloned and overexpressed in Escherichia coli to develop a simultaneous in vitro assay suitable for high-throughput screening (HTS) of small molecules. Readily accessible ribose-5-phosphate and fructose-6-phosphate were used as substrates for the heptose pathway and to circumvent the obstacles of substrate availability and stability. We have optimized an in-vitro pathway assay and report its use to screen a small molecule library that identifies the first reported inhibitor of heptose synthesis. The inhibitor, 2-Methyl-6-methylamino-7-oxo-78naphthol [ 1 ,2,3-de]quinoline-4-sulfonic acid was determined to be a competitive inhibitor of the HidE kinase with Ki of 63 ± 8 f..LM. This assay enables probing an important biochemical pathway that otherwise would be highly challenging and allows for efficient detection of novel LPS inhibitors that could potentially lead into antimicrobial treatment. </p> <p> This study also exploited structure-based drug design via protein crystallization. The crystal apoprotein structure of GmhA was determined to a 1.95 A resolution. The GmhA with the substrate bound was determined to a 2.79 A resolution which is the first reported structure of this protein bound with the substrate. By applying knowledge and techniques earned from a combination of advances in assay development, compound library development, robotic instrumentation and protein crystallization, identification and modification of novel inhibitors is possible and has the potential to advance antibiotic research. </p> / Thesis / Master of Science (MSc)
15

Molecular mechanisms responsible for the dynamic modulation of macrophage responses to varying dosages of lipopolysaccharide

Morris, Matthew 08 June 2014 (has links)
The innate immune system depends for its effectiveness on the function of specialized pattern recognition receptors which enable it to target pathogens for destruction on the basis of conserved molecular patterns such as flagellin or lipopolysaccharide (LPS). Specifically, LPS is recognized by the Toll-like receptor 4 (TLR4), activating a signaling pathway which triggers the production of both pro- and anti-inflammatory mediators. Very low doses of LPS, however, preferentially induce pro-inflammatory cytokines, which can lead to persistent low-grade inflammation, a contributing factor in a host of chronic diseases. The mild pro-inflammatory skewing induced by super-low-dose LPS also potentiates the inflammatory response to later challenge with a higher dose of LPS in a phenomenon known as the "Shwartzman reaction" or "endotoxin priming". We investigated the mechanisms involved in pro-inflammatory skewing by super-low-dose LPS in THP-1 cells and found it to be governed by a regulatory circuit of competitive inhibition between glycogen synthase kinase 3 (GSK3) and Akt, which promote the activity of the transcription factors FoxO1 and CREB, respectively. Super-low-dose LPS mildly activated FoxO1 and pro-inflammatory gene transcription without inducing anti-inflammatory genes or activating CREB, and this pro-inflammatory skewing could be abolished by inhibition of GSK3 or direct activation of CREB. We then examined the dynamics of the LPS response at various different dosages in murine bone-marrow-derived macrophages (BMDM). The pro-inflammatory cytokine IL-12 was most strongly induced by intermediate LPS dosages, with very low or high doses inducing less robust IL-12 production. Knockout of the inhibitory TLR4 pathway molecules Lyn or IRAK-M resulted in sustained induction of IL-12 by high doses of LPS. By activating CREB, we were able to reduce inflammation in WT BMDM, and saw that this corresponded with increased phosphorylation of CREB. Overall, we are confident that this subnetwork is an important switch regulating the resolution of inflammation in response to TLR4 stimulation. Furthermore, we propose that endotoxin priming is an example of the generalized capacity of all signaling networks to recall prior states, and that an appreciation for the history and context of exposure to stimuli is critical for the understanding of signaling behavior. / Ph. D.
16

Bedeutung der Lipopolysaccharidstrukturen bei pathogenen Vibrio cholerae Stämmen für die Ausbildung von Cholera und Abgrenzung zu Umweltisolaten / Importance of LPS structures of virulent Vibrio cholerae strains in correlation with cholera disease and discrimination from environmental strains

Schild, Stefan January 2005 (has links) (PDF)
Obwohl inzwischen über 200 verschiedene Serogruppen von V. cholerae bekannt sind, wurden Ausbrüche der Cholera hauptsächlich von Stämmen der unbekapselten Serogruppe O1 und der bekapselten Serogruppe O139 verursacht. Die Komponenten des Lipopolysaccharids (LPS) von O1 und O139, sowie die Kapsel von O139 tragen zur Kolonisierung im Gastrointestinaltrakt bei. Um die Funktion des LPS und der Kapsel als Virulenzfaktor näher zu untersuchen, wurden Adhäsionsstudien mit definierten LPS- und/ oder Kapsel-Mutanten beider pathogener Serogruppen durchgeführt. Dazu wurde die Mukus-produzierende humane Darmzelllinie HT-29-Rev MTX verwendet. Im Vergleich zum jeweiligen Wildtyp (Wt) konnte für eine O Antigen-Mutante von O1 eine Reduktion um 85%, für eine O Antigen/ Kapsel-Mutante von O139 eine Reduktion um 70% in der Adhäsionsrate festgestellt werden. Ein Beitrag von ToxR regulierten Genprodukten ist ebenfalls möglich. Weiterhin wurden mit WavJ und WavD zwei Genprodukte der Kernoligosaccharid -Biosynthese charakterisiert, welche bislang nur in dem wa*-Genclustertyp 1 der klinischen Isolate nachgewiesen worden sind. Es konnte gezeigt werden, dass beide Genprodukte an der Biosynthese des Kern OS beteiligt sind, wobei WavJ mit hoher Wahrscheinlichkeit die Heptosyl-IV-Transferase darstellt. Die wavDJ-Doppelmutanten beider Serogruppen wiesen eine erhöhte Sensitivität gegenüber Novobiocin auf. Dagegen konnte eine Attenuation der Mutanten im Mausmodell nur für die Serogruppe O139 demonstriert werden. Ein Schlüsselenzym der LPS-Biosynthese stellt die Oberflächenpolymer:Lipid A-Kern OS-Ligase (WaaL), kurz O Antigen-Ligase genannt, dar. In dieser Arbeit wurden die in der Primärstruktur stark unterschiedlichen Ligasen aus einem pathogenen (P27459) und apathogenen (V194) V. cholerae Isolat strukturell und funktionell analysiert. Es wurde gezeigt, dass die Aktivität beider Ligasen von der Anwesenheit eines N-Acetylglucosamins (GlcNAc) im Kernoligosaccharid abhängig ist. Dieser Zucker wird durch das Genprodukt WavL transferiert, welchem in dieser Arbeit die Aktivität einer N-Acetylglucosaminyltransferase zugeordnet werden konnte. Das Gen wavL wurde in allen zur Verfügung stehenden V. cholerae Isolaten nachgewiesen und stellt wahrscheinlich eine generelle Voraussetzung des Kern OS für eine O Antigen-Anheftung dar. Im Gegensatz dazu, diskriminiert die An- bzw. Abwesenheit einer Galaktose (Gal) im Kern OS die Spezifität der Ligasen von V. cholerae P27459 bzw. V194. Dabei ist die Aktivität der Galaktosyltransferase WavM, essentiell für die Aktivität der Gal-abhängigen Ligase von V194. Die Gal-unabhängige Ligase von P27459 wird hingegen durch die Anwesenheit von Gal im Kern OS inhibiert. Hybridfusionen der beiden Ligasen deuten an, dass die Erkennungsdomäne für Gal in der C-terminalen Hälfte lokalisiert ist. Erstmals wurde die Topologie einer Ligase durch PhoA- und LacZ-Fusionen analysiert. Die Suche nach konservierten Aminosäuren (AS) in verschiedenen Ligasen führte zur Identifizierung der Motive R(X3)L und H(X10)G in zwei periplasmatischen Schleife. Ein Austausch des R oder des H in diesen Motiven führte zum Verlust der Ligase-Aktiviät von WaaL aus V. cholerae und S. enterica. Damit geben diese Motive einen ersten Hinweis auf das aktive Zentrum des Enzyms. Desweiteren wurde nach möglichen O Antigen-Transportern bei V. cholerae gesucht, welche bislang noch nicht identifiziert worden waren. Über die Anpassungen von V. cholerae an aquatische Ökosysteme, insbesondere hinsichtlich der wechselnden Osmolarität, ist nahezu nichts bekannt. Durch ein in dieser Arbeit konstruiertes und etabliertes Transposonsystem konnten 3600 Mutanten erzeugt und auf Wachstumsdefekte unter hypertonischen Bedingungen untersucht werden. Eine dieser osmosensitiven Mutanten wies eine Insertion in dem Locus VCA0565 auf, welcher für eine putative Sensor-Histidinkinase kodiert. Mit dem Regulator, kodiert durch VCA0566, stellt VCA0565 das putative Zwei-Komponentensystem OsmRK dar. Transkriptomanalysen von osmR/ K-Mutanten lieferten keine Erklärung des Wachstumsdefekts unter hypertonischen Bedingungen, zeigten aber eine Vernetzung der durch OsmR/ K regulierten Gene mit dem ToxR-Regulon auf. Analysen der Außenmembran demonstrierten, dass eine Mutation von osmR/ K zu einer Repression von OmpU unter hohen Salzkonzentrationen führt. Vergleichende Experimente mit weiteren Mutanten deuteten an, dass es in osmR/ K- und toxS-Mutanten unter erhöhten Salzkonzentrationen zur Degradation von ToxR kommt. Während die Deregulation von OmpU in osmR/ K-Mutanten nur unter Salzstress zu beobachten war, führte in der toxS-Mutante auch ein Membranstress durch Zugabe von Protamin zu einer Repression von OmpU. Die zu OsmR/ K nah verwandten putativen Zwei-Komponentensysteme EnvZ/ OmpR und VCA0257/ VCA0256 hatten unter keiner der getesteten Bedingungen einen Einfluss auf die Proteine der AM. Weiterhin wurde eine C-terminale Degradation von HutA unter hypertonischen Bedingungen aufgedeckt. / Although, more than 200 serogroups of V. cholerae.were identified, however, only the strains of the non-encapsulated O1 and the encapsulated O139 serogroups were found to be responsible for cholera epidemics. The components of the LPS of O1 and O139 play a crucial role in the colonization of the gastrointestinal tract. To analyze the contribution of the LPS and the capsule in the adhesion to epithelial cells, mucus layer attachment studies using defined O antigen and/ or capsule mutants of both serogroups and the human intestinal cell line HT29-Rev MTX were performed. In case of the O antigen mutant of O1 a 85% and for the O antigen and capsule mutant of O139 a 70% reduction in the adhesion rate was determined compared to wild type. It is likely that ToxR regulated gene products also contribute to the adhesion, since a toxR-mutant of O1 showed a 3-fold reduction in the adhesion rate. In addition the two gene products of the core oligosaccharide biosynthesis, WavJ and WavD, were characterized. So far the corresponding genes could only be found in the wa*-gene cluster type 1 of clinical isolates. It could be demonstrated, that single and double knockout mutants have an effect on core oligosaccharide biosynthesis in both serogroups. Based on bioinformatical data it is likely that WavJ represents the heptosyl-IV-transferase. Double mutants in wavJ and wavD of both serogroups showed an attenuated growth in the presence of novobiocin, whereas only the mutants in O139 demonstrated reduced colonization in the in vivo mouse model. The surface polymer:lipid A-core ligase (WaaL), also called the O antigen ligase, is a key enzyme in the LPS biosynthesis of Gram- bacteria. Part of this work focused on the structural and functional characteristics associated with the recognition of the core oligosaccharide of two distantly related ligases of a virulent (P27459) and an environmental (V194) V. cholerae isolate. It was demonstrated that the activity of both ligases is dependent on the presence of N-acetylglucosamine, which is attached to the core oligosaccharide by the WavL glycosyltransferase. The gene wavL could be found in all V. cholerae isolates so far. In contrast, an additional sugar substitution, i.e. galactose, which is transfered by the WavM galactosyltransferase, discriminates the core oligosaccharide specificity of the ligases of P27459 and V194. The activity of WavM is essential for the activity of the galactose-dependent ligase of V194, whereas it hinders the galactose-independent ligase of P27459 to transfer the O antigen onto the core oligosaccharide. WaaL protein hybrids between galactose dependent and non-dependent ligases indicate that the galactose recognition site is located in the C-terminal half. Using PhoA and LacZ fusions the topology of the ligase of P27459 was determined. Amino acid sequence alignments of WaaL proteins identified the distinct conserved motifs R(X3)L and H(X10)G in two periplasmic loops. By site directed mutagenesis of the histidine and arginine residues within these motifs, an abortism of O antigen transfer reaction for WaaLs of V. cholerae and Salmonella enterica was found. Furthermore the putative O antigen-transport systems of V. cholerae were investigated. In this work a new transposon system was constructed and established, resulting in 3600 mutants, which were screened for growth defects under hypertonic conditions. One of these mutants had an insertion in locus VCA0565, which encodes a putative sensor histidine kinase. In combination with the transcriptional regulator, encoded by VCA0566, they represent the putative two-component system OsmRK. Comparing the transcriptom of osmR/ K-mutants to the wild type revealed no explanation for the osmosensitive phenotype, but showed some interaction between the regulon of OsmR/ K and ToxR. Analysis of the outer membrane demonstrated, that a mutation in osmR/ K results in a repression of OmpU under hypertonic conditions. Comparative experiments, including additional mutants indicated a degradation of ToxR in osmR/ K- and toxS-mutants in presence of high salt concentrations. In contrast to osmR/ K-mutants, in the toxS-mutant the repression of OmpU could be also observed by a different membrane stress caused by protamine. In addition, the analysis of the outer membrane proteins revealed a C-terminal degradation of HutA under hypertonic stress conditions.
17

Shigella flexneri Lipopolysaccharide Modifications in the Presence of Bile Salts

Bauwens, Ciara January 2019 (has links)
Thesis advisor: Christina Faherty / Shigella, a Gram-negative bacterial pathogen, induces inflammation and diarrhea by invading the colonic epithelium. Annually, millions of Shigella infections occur globally, mainly in malnourished children. Despite extensive research, no effective vaccine exists. This work explores the mechanisms of Shigella proliferation before colonic infection, where an adverse environment is encountered, including bile salts exposure. One means of bile salts evasion is possibly lipopolysaccharide (LPS) modification. LPS—O-antigen, the polysaccharide core, and the lipid A—is a crucial outer membrane component for virulence. Transposon mutant analysis suggested a role of LPS in bile salts resistance; thus, the goal of this study was to define Shigella LPS modifications following bile salts exposure. LPS mutants were investigated to distinguish crucial components of the LPS structure for bile salts resistance. Mutants were analyzed relative to wild type for growth in bile salts and biofilm formation. The LPS from all strains was purified and analyzed by polyacrylamide gel electrophoresis. Stained gels show modifications in the Oag, lipid A, and core components. Key bands were sent for mass spectrophotometry sequencing. Results indicate that the O-antigen regulates Shigella bile salts resistance, as the complete O-antigen deletion mutant and partial deletion mutants exhibited slow growth in bile salts and failed to form a biofilm in the presence of bile salts. This work highlights the importance of bile salts exposure for Shigella in future targeted antibodies against the pathogen. / Thesis (BS) — Boston College, 2019. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Biology.
18

The role of NLRP3 signalling in the pathology of depression

Wickens, Robin January 2017 (has links)
Neuroinflammation is considered to be an important underlying process in the pathology of major depressive disorder (MDD) within a subpopulation of patients. MDD is associated with increased levels of proinflammatory cytokines in the blood, and cytokine-based treatments can induce depression. In mice, the induction of systemic inflammation with lipopolysaccharide (LPS) can induce depressive-like behaviours that are associated with symptoms of MDD. Microglia mediate the neuroinflammatory response within the brain and have a critical role in inflammation-induced depressive- like behaviours. Microglia within the brain exist in low O2 conditions (~5 %), though experimentation in vitro is typically carried out in high O2 conditions (20 %). The NLRP3 inflammasome is a molecular complex central to the production of the proinflammatory cytokine IL-1β and the propagation of the inflammatory response. NLRP3 inflammasome activity has been implicated in chronic stress and inflammation-based models of depressive-like behaviours in mice. The aims of this thesis were to study LPS-induced depressive-like behaviour in C57BL/6J mice, the role of NLRP3 in the behavioural output and the influence of oxygen (O2) availability on NLRP3 inflammasome activity in microglia cell cultures. Acute LPS induced depressive-like behaviours were observed in hedonia-based tasks but not in the forced swim test (FST). However, acute LPS induces a brief period of inflammation that does not address the sustained nature of depression. A FST depressive-like behaviour was observed in a novel 3-day increasing dose LPS model of sustained inflammation, whilst circumventing the development of LPS tolerance. The LPS-induced sickness was partially dependent upon NLRP3, though the resulting depressive-like behaviour was not. NLRP3 inflammasome signalling in microglia was studied in 5 % O2 conditions to replicate the hypoxic environment within the brain. Primary microglia isolated from mixed glial cultures by mild trypsinisation exhibited functional NLRP3 inflammasome expression and activity. When exposed to 5 % O2 (24 hours), NLRP3 inflammasome activity and adenosine triphosphate (ATP)-induced cell death was attenuated, whilst the production of other proinflammatory cytokines were unaffected. These data demonstrate the O2 sensitivity of NLRP3 inflammasome signalling in microglia. This thesis demonstrates a novel model of sustained inflammation and that inhibiting NLRP3 signalling may provide a target for attenuating neuroinflammation and the resulting behavioural changes. The importance of understanding the influence of O2 in microglia function and neuroinflammation was highlighted by the sensitivity of NLRP3 inflammasome activity to low O2.
19

Rehabilitative reaching training and plasticity following spinal cord injury in the adult rat

Krajacic, Aleksandra 06 1900 (has links)
Injury to the cervical spinal cord is a devastating event that results in a transient to permanent loss of sensory and motor functions following injury. Moderate recovery has been reported to occur in individuals and in animal models after spinal cord injury (SCI). One approach to promote recovery after SCI is rehabilitative training. This thesis examines the relation of reaching training with adaptive changes (i.e. plasticity) and functional recovery following SCI. In my first experiment, I investigated whether plasticity of the corticospinal tract (CST) is the cause for reaching recovery after ablation of the dorsal and lateral CST. Rats that received reaching training were significantly better in reaching than their untrained counterparts. A relesion of the CST revealed that the reaching recovery mainly depended on plasticity of the CST itself. Since it is controversial whether training should be initiated immediately after SCI, I investigated whether a delayed initiation of reaching training after SCI is beneficial. I compared the reaching success of rats that received reaching training on day 4 post SCI with rats that received training on day 12 post SCI. I found that the reaching success in rats that either received reaching training on day 4 or 12 following SCI was similar. Lastly, I investigated whether training efficacy is declined in chronically injured rats. Since it has been shown that the inflammatory response after SCI declines, it is questionable whether there is a relation between the inflammatory response after SCI and training efficacy. In my last experiment I injected chronically injured rats with a substance that induces a systemic inflammation. I found that rehabilitative reaching training in chronic injured rats only resulted in an improved reaching recovery when the training was combined with the administration of the substance that induces inflammation (lipopolysaccharide). Although there are still unanswered questions regarding the underlying mechanism for functional recovery after SCI, the results of this thesis could be used as a basic to improve future rehabilitative training strategies and therefore improve the quality of life in individuals that suffer from SCI.
20

Host-pathogen interactions between Francisella tularensis and Drosophila melanogaster

Vonkavaara, Malin January 2012 (has links)
Francisella tularensis is a highly virulent Gram-negative bacterium causing the zoonotic disease tularemia. Arthropod-borne transmission plays an important role in transferring the disease to humans. F. tularensis induces very low amounts of pro-inflammatory cytokines during infection, due to inhibition of immune signaling pathways and an unusual structure of its lipopolysaccharide (LPS). To date, there is no vaccine available that is approved for public use, although an attenuated live vaccine strain (LVS) is commonly used as a model of the more infectious Francisella strains. To produce an effective vaccine it is important to understand the lifecycle of F. tularensis, including the interaction with the arthropod hosts. Drosophila melanogaster is a widely used model organism, which is increasingly being used in host-pathogen interaction studies as the immune pathways in flies are evolutionary conserved to the immune pathways in humans. An important part of the immune defense of D. melanogaster as well as of arthropods in general is the production of antimicrobial peptides. These peptides primarily target the bacterial membrane, inhibiting bacterial proliferation or directly killing the bacteria. The aim of this thesis was to establish D. melanogaster as a model for F. tularensis infection and as a model for arthropod vectors of F. tularensis. Also, to use D. melanogaster to further study the interaction between F. tularensis and arthropod vectors, with specific regard to the host immune signaling and arthropod antimicrobial peptides. F. tularensis LVS infects and kills D. melanogaster in a dose-dependent manner. During an infection, bacteria are found inside fly hemocytes, phagocytic blood cells, similar as in human infections. In mammals genes of the intracellular growth locus (igl) are important for virulence. In this work it is shown that the igl genes are also important for virulence in flies. These results demonstrate that D. melanogaster can be used as a model to study F. tularensis-host interactions. LVS induces a prolonged activation of several immune signaling pathways in the fly, but seem to interfere with the JNK signaling pathway, similarly as in mammals. Overexpression of the JNK pathway in flies has a protective effect on fly survival. Relish mutant flies, essentially lacking a production of antimicrobial peptides, succumb quickly to a F. tularensis infection, however, F. tularensis is relatively resistant to individual D. melanogaster antimicrobial peptides. Overexpressing antimicrobial peptide genes in wildtype flies has a protective effect on F. tularensis infection, suggesting that a combination of several antimicrobial peptides is necessary to control F. tularensis. The production of numerous antimicrobial peptides might be why D. melanogaster survives relatively long after infection. An intact structure of the lipid A and of the Kdo core of Francisella LPS is necessary for resistance to antimicrobial peptides and full virulence in flies. These results are similar to previous studies in mammals. In contrast to studies in mammals, genes affecting the O-antigen of F. tularensis LPS are not necessary for virulence in flies. In conclusion, this thesis work shows that D. melanogaster can be used as a model for studying F. tularensis-host interactions. LVS activates several immune pathways during infection, but interfere with the JNK pathway. Overexpressing the JNK pathway results in increased survival of flies infected with LVS. Despite rather high resistance to individual antimicrobial peptides, exposure to a combination of several D. melanogaster antimicrobial peptides reduces the virulence of F. tularensis.

Page generated in 0.0712 seconds