Spelling suggestions: "subject:"liquefaction trigger""
1 |
Development of an Improved and Internally-Consistent Framework for Evaluating Liquefaction Damage PotentialUpadhyaya, Sneha 04 December 2019 (has links)
Soil liquefaction continues to be one of the leading causes of ground failure during earthquakes, resulting in significant damage to infrastructure around the world. The study presented herein aims to develop improved methodologies for predicting liquefaction triggering and the consequent damage potential such that the impacts of liquefaction on natural and built environment can be minimized. Towards this end, several research tasks are undertaken, with the primary focus being the development of a framework that consistently and sufficiently accounts for the mechanics of liquefaction triggering and surface manifestation. The four main contributions of this study include: (1) development of a framework for selecting an optimal factor of safety (FS) threshold for decision making based on project-specific costs of mispredicting liquefaction triggering, wherein the existing stress-based "simplified" model is used to predict liquefaction triggering; (2) rigorous investigation of manifestation severity index (MSI) thresholds for distinguishing cases with and without manifestation as a function of the average inferred soil-type within a soil profile, which may be employed to more accurately estimate liquefaction damage potential at sites having high fines-content, high plasticity soils; (3) development of a new manifestation model, termed Ishihara-inspired Liquefaction Severity Number (LSNish), that more fully accounts for the effects of non-liquefiable crust thickness and the effects of contractive/dilative tendencies of soil on the occurrence and severity of manifestation; and (4) development of a framework for deriving a "true" liquefaction triggering curve that is consistent with a defined manifestation model such that factors influential to triggering and manifestation are handled more rationally and consistently. While this study represents significant conceptual advance in how risk due to liquefaction is evaluated, additional work will be needed to further improve and validate the methodologies presented herein. / Doctor of Philosophy / Soil liquefaction continues to be one of the leading causes of ground failure during earthquakes, resulting in significant damage to infrastructure around the world (e.g., the 2010-2011 Canterbury earthquake sequence in New Zealand, 2010 Maule earthquake in Chile, and the 2011 Tohoku earthquake in Japan). Soil liquefaction refers to a condition wherein saturated sandy soil loses strength as a result of earthquake shaking. Surface manifestations of liquefaction include features that are visible at the ground surface such as sand boils, ejecta, cracks, and settlement. The severity of manifestation is often used as a proxy for damage potential of liquefaction. The overarching objective of this dissertation is to develop improved models for predicting triggering (i.e., occurrence) and surface manifestation of liquefaction such that the impacts of liquefaction on the natural and built environment can be minimized. Towards this end, this dissertation makes the following main contributions: (1) development of an approach for selecting an appropriate factor of safety (FS) against liquefaction for decision making based on project-specific consequences, or costs of mispredicting liquefaction; (2) development of an approach that allows better interpretations of predictions of manifestation severity made by the existing models in profiles having high fines-content, high plasticity soil strata (e.g., clayey and silty soils), given that the models perform poorly in such conditions; (3) development of a new model for predicting the severity of manifestation that more fully accounts for factors controlling manifestation; and (4) development of a framework for predicting liquefaction triggering and surface manifestation such that the distinct factors influential to each phenomenon are handled more rationally and consistently.
|
2 |
Liquefaction Triggering Model for Subduction Zone EarthquakesAnbazhagan, Balakumar 14 September 2021 (has links)
Liquefaction is one of the major causes of ground failures during an earthquake. Recent evidence shows that the existing variants of the "simplified" liquefaction evaluation procedure lead to inaccurate results for megathrust earthquakes in subduction interfaces. To overcome this drawback and to achieve better prediction of liquefaction cases in subduction zones, this research intends to develop new empirical models that could be used for the prediction of liquefaction triggering in subduction zones. Towards this goal, new models for number of equivalent cycles (n_eq) and stress-reduction factor (r_d) have been proposed. The models are developed by regressing site response data obtained from 254 pairs of subduction ground motions and 77 representative soil profiles. To account for tectonic differences and magnitude scaling, separate models are developed for interface and intraslab earthquakes. The uncertainties involved in the proposed models are quantified through standard deviations of regression coefficients, event, site, and residual terms. The resulting models differ from other published models, especially the model for number of equivalent cycles. It was found that n_eq is greatly influenced by the fundamental site period. The model for r_d predicts higher values at shallow depths and lower values at deeper layers than other published models. Comparing the factors of safety against liquefaction with those from other existing models revealed that the use of models proposed in this research is more likely to reduce the "false positives" in liquefaction predictions, especially when design ground motion acceleration is high. / Master of Science / During earthquake shaking, loose saturated sands may lose strength and behave more like a liquid than a solid. This phenomenon is referred to liquefaction. Liquefaction has been responsible for infrastructure failure during past earthquakes, thus leading to major economic losses. This prompts the prediction and mitigation of potential liquefaction effects in a building site. However, the current state-of-the-practice for predicting liquefaction is inaccurate for large magnitude earthquakes in subduction zones. This provided the impetus for this research which focusses on developing new liquefaction evaluation models for large magnitude earthquakes. New models for number of equivalent cycles and stress reduction factor are developed by analyzing the representative ground motions and soil strata. These empirical parameters are central to the prediction of liquefaction triggering. Comparing the new models with the existing models revealed that the factor of safety against liquefaction estimated using new models are greater than those obtained using existing models for large magnitude earthquake scenario when the ground acceleration is high. This implies that using the existing models for predicting liquefaction in a site subjected to high values of ground acceleration from a subduction earthquake will lead to "false positives." Developed using a comprehensive dataset and robust regression techniques, the models developed in this research will lead to better predictions of liquefaction due to large subduction events.
|
3 |
Performance of Columnar Reinforced Ground during Seismic ExcitationKamalzare, Soheil 31 January 2017 (has links)
Deep soil mixing to construct stiff columns is one of the methods used today to improve performance of loose ground and remediate liquefaction problems. This research adopts a numerical approach to study seismic performance of soil-cement columnar reinforcements in loose sandy profiles. Different constitutive models were investigated in order to find a model that can properly predict soil behavior during seismic excitations. These models included NorSand, Dafalias-Manzari, Plasticity Model for Sands (PM4Sand) and Pressure-Dependent-Multi-Yield-02 (PDMY02) model. They were employed to predict behavior of soils with different relative densities and under different confining pressures during monotonic and cyclic loading. PDMY02 was identified as the most suitable model to represent soil seismic behavior for the system studied herein.
The numerical aspects of the finite element approach were investigated to minimize the unintended numerical miscalculations. The focus was put on convergence tolerance, solver time-step, constraint definition, and, integration, material and Rayleigh damping. This resulted in forming a robust numerical configuration for 3-D nonlinear models that were later used for studying behavior of the reinforced grounds.
Nonlinear finite element models were developed to capture the seismic response of columnar reinforced ground during dynamic centrifuge testing. The models were calibrated with results from tests with unreinforced profiles. Thereafter, they were implemented to predict the response of two reinforced profiles during seismic excitations with different intensities and liquefaction triggering. Model predictions were compared with recordings and the possible effects from the reinforcements were discussed. Finally, parametric studies were performed to further evaluate the efficiency of the reinforcements with different extension depths and area replacement ratios.
The results collectively showed that the stiff elements, if constructed appropriately, can withstand seismic excitations with different intensities, and provide a firm base for overlying structures. However, the presence of the stiff elements within the loose ground resulted in stronger seismic intensities on the soil surface. The columns were not able to considerably reduce pore water pressure generation, nor prevent liquefaction triggering. The reinforced profiles, comparing to the free-field profiles, had larger settlements on the soil surface but smaller settlements on the columns. The results concluded that utilization of the columnar reinforcements requires great attention as these reinforcements may result in larger seismic intensities at the ground surface, while not considerably reducing the ground deformations. / Ph. D. / The mitigation of seismic damage potential of soft soil sites remains one of the leading challenges in geotechnical earthquake engineering. It is well-established that structures located on these sites generally experience more damage due to excessive ground deformation during earthquakes. Ground reinforcements are often required to improve these sites for support of overlying structures. A remediating approach is to construct stiff columns within these sites by mechanically mixing soil with cementitious materials. Cemented soil has higher strength, and thereby, undergoes less deformations. Moreover, stiff columns can provide resistance against movement of their surrounding soil providing a firm base for possible above foundations.
The primary focus of this research is to evaluate the effect of stiff column reinforcements on seismic behavior of loose ground. For this purpose, a numerical model was developed for the reinforced ground, and it was validated with results from experiments. The model was then used to study the performance of the reinforced ground during earthquake excitations with different intensities. The observed behavior was discussed and compared with findings from previous studies in literature. Finally, the numerical model was employed to evaluate efficiency of the reinforcements with different extension depths and occupied area.
The results collectively showed that stiff columns, if constructed appropriately, can withstand different shaking levels, and provide a firm support for overlying structures. However, they were not efficient in reducing deformation of the surrounding soils. The presence of the stiff elements within the loose ground resulted in stronger seismic intensities on the soil surface. The study concluded that utilization of stiff columns requires great attention and understanding of the reinforcing mechanism. These columns might increase seismic intensity below foundations, while not considerably reducing the ground deformations.
|
Page generated in 0.1439 seconds