• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and development of liquid crystal lenses

Ashraf, Mujahid Al Islam, n/a January 2006 (has links)
The use of optics in the fields of nano-technology, telecommunication and medicine has been growing exponentially in recent years. Application of liquid crystals within optics has been a growing trend from flat screen displays to variable focus lenses in a digital versatile discs. One area of the recent developments within optics has been the development of two-photon fluorescence microscopy and high-density three-dimensional optical data storage. In such applications, where a light beam has to be focused deep within the volume of bulk media, aberrations are introduced. The most dominant aberration is spherical aberration which results from the mismatch in refractive indices of the immersion and recording media. The aim of this thesis is to design a liquid crystal lens for dynamic tube length compensation of the spherical aberration. Liquid crystal phase plates are used in everyday liquid crystal displays (LCDs) such as mobile phones and calculators. The technologies required to manufacture a liquid crystal phase plate are well understood. However, an application like three-dimensional data storage requires different properties in the liquid crystal phase plate, which are investigated in this thesis. To fabricate our liquid crystal phase plate we used ZLI-5049-000 from MERCK as the liquid crystal medium, with poly-vinyl alcohol (PVA) and Indium Tin Oxide (ITO) providing the insulating and conducting layers, respectively. It has been demonstrated that vacuum vapour deposition can be used to coat a glass substrate with ITO. However, in order for the ITO coating to be conductive a method is developed where the substrate is heated to 300oC before, during and after the coating. Similarly, a method has been developed for producing a uniform 10 μm coating of PVA on top of the ITO. In order to produce a liquid crystal lens with the properties required to compensate for spherical aberration an investigation into the properties of the liquid crystals is first conducted. A liquid crystal phase plate described in chapter 3 is characterised to determine the effect of the rubbing direction of the insulating layer and the effective refractive index change with applied voltage. It has been demonstrated that an effective change in refractive index of 0.11 can be achieved with 30 volts applied across the ITO electrodes. Based on the characterisation of the liquid crystal phase plate four different liquid crystal lens designs have been proposed and tested. The lens designs are based upon convergent and divergent lenses with different refractive index lens substrates. It is determined that a liquid crystal lens with a divergent lens substrate with a refractive index of 1.785 can be used to effectively compensate for spherical aberration. This has been confirmed experimentally by using the liquid crystal lens in a two-photon confocal microscope and measuring a increase in detected intensity at a depth below the surface of a sample. The research conducted in this thesis shows the ability to dynamically compensate for spherical aberration introduced by a mismatch in the refractive indices between the immersion and sample mediums. It has also been demonstrated that new methods for fabricating the conductive and insulating layers are suitable for producing a liquid crystal lens. A liquid crystal lens based on the research in this thesis could be used in three-dimensional data storage or microscopy applications.

Page generated in 0.0836 seconds