• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Výměna hmoty kapalina-pára v procesech stripování / Liquid-vapor mass exchange in stripping processes

Liman, Martin January 2021 (has links)
This diploma thesis deals with the solution of ammonia separation from waste raw materials of agricultural production. It focuses on determining the efficiency of desorption from an experimental stripping device depending on the measurement temperature. Ammonia water solutions and liquid digestate samples from technical practice were used to verify the functionality of the equipment. Increasing separation efficiency with increasing temperature has been demonstrated. The device was gradually improved during the measurement for a better profitability of the separation process. The results of the experiments are discussed concerning the theoretical assumptions and compared with other methods of ammonia separation.
2

Využití membrán pro zpracování odpadních vod ze zemědělství / Membrane technologies for agricultural wastewater treatment

Uhlířová, Marcela January 2021 (has links)
This thesis deals with an agricultural wastewater treatment (liquid digestate) by membrane technology. There is a fundamental description of characteristics of membrane technology with regard to application of agricultural wastewater treatment in this thesis. Experimental device for treatment of liquid digestate is designed and it consists of three steps – microfiltration, ultrafiltration and reverse osmosis. The first step consists of four filters with different pore sizes (80, 25, 10 and 5 µm). The second step is ultrafiltration and the third and key step is reverse osmosis. In the final step monovalent ions such as NH4+ are separated. Reverse osmosis consists of two stage system which results in higher recovery. Three experiments were carried out in order to verify the efficiency of separation dissolved solids.
3

Získávání fosforu z fugátu / Phosphorus recovery from liquid digestate

Heger, Jan January 2021 (has links)
The focus of this thesis is the posibility of obtaining phosphorus from liquid digestate. The theoretical part of the thesis is focused on summarizing the current situation regarding phosphorus recovery. The research summarizes the essential information about the method of struvite precipitation, by which phoshphorus is obtained in the form of struvite, which can be further used as a fertilizer. Based on the process information, an experimental device was designed to obtain phosphorus in the form of struvite, corresponding to industry standards. It is a cylindrical vessel with a conical bottom, in which the liquid digestate with the chemicals is mixed with a stirrer. The functionality of the device was tested experimentally on the created device. The results of the experiment were analyzed by XPS method, which confirmed the formation of struvite. For future operation, modifications of the device and pre-treatment of the liquid digestate were proposed, which could improve the whole process and its results.
4

Small-scale biogas production from organic waste and application in mid-income countries – a case study of a Lebanese community

Huber, Sebastian January 2019 (has links)
The controlled anaerobic digestion of organic waste in a biogas facility aggregates advantages of waste treatment, energy recovery and nutrient recycling and is a promising technology to deal with contemporary issues of waste management and energy recovery. Small-scale biogas production units can be simply designed and successfully operated even in settings where means for advanced technology equipment are low and institutional capacities limited. In the country of Lebanon, landfilling and open dumping of solid waste is common practice and anaerobic treatment of waste is applied only sporadically and hence, not well-established. The aim of this study was to assess the feasibility of small-scale biogas production using organic waste, explore options for its application and propose a business model on how feedstock sourcing, facility operation and end product utilization could be realized in the research area. Research area was Ghazir village, a community within the urbanized coastal area in Lebanon. Methods were of both quantitative and qualitative nature.A techno-economic assessment served to quantify biogas and liquid digestate production rates, based on available resources of organic waste in the research area. Costs associated with installation, operation and maintenance of the proposed facility have been projected based on present examples of similar facilities in the country. Interviews with local stakeholders and a questionnaire survey among residents in the area of research allowed to identify suitable end use options for the produced biogas and served to explore communal acceptance of local biogas production. Results show that the produced biogas can be used for thermal feedstock treatment to supply local farmers with a fertilizer alternative, i.e. the liquid digestate. Organic waste that is subject to the anaerobic treatment in a digester can be provided by multiple point sources, i.e. households and a local food market in the form of source-sorted kitchen waste and unsold fruits and vegetables, respectively. Due to the current unfamiliarity with anaerobic treatment of organic waste in the research area, tests on the effects on crop yields are advised to take place before implementation of the proposed business model, as its communal benefits hinge on the suitability of the liquid digestate as a fertilizer. Economic calculations show low investment costs for the proposed facility as well as acceptable annual revenues in case the liquid digestate proves to be of interest for commercial acquisition by local farmers. The used methods and strategies in this feasibility assessment, i.e. waste quantification, yield and cost calculations, stakeholder interviews and questionnaire survey allow for replication of the taken investigation to eventually initiate small-scale biogas production using organic waste in other settings with similar conditions.
5

Zpracování fermentačních zbytků z bioplynových stanic / Fermentation remainder treatment in a biogas plant

Budín, Oto January 2017 (has links)
This diploma thesis deals with dewatering technologies of fermentation residues from biogas plants and aims to design an integration of selected technology into the biogas plant. Fermentation residues (or digestate), which are a by-product of anaerobic biomass fermentation in biogas plants, contain a certain amount of nutrients and are usually used as agricultural fertilizers. However, the high-water content in digestate and the associated low nutrient concentration increase the cost of its storage and transport. Dewatering of fermented material could help reduce these costs. The main part of this work included the design of an integration of the selected dewatering technology into the biogas plant – its placement in a process, an addition of necessary appliances, the influence on material and energy flows. In this case, the fermentation residues are processed in two phases. First, a separation of the solid and the liquid fraction by a screw press. The second step is to thicken the liquid digestate by evaporation in a multistage evaporator. Evaluation of the design of a dewatering technology, including its impact on the economy of the biogas plant, is also part of the diploma thesis.
6

Integrace technologie pro zahušťování digestátu v bioplynové stanici / Integration of a technology for digestate thickening in a biogas plant

Miklas, Václav January 2018 (has links)
This diploma thesis is mainly focused on the digestate thickening in a biogas plant. First, overview of the biogas technology in the Czech Republic is presented. Furthermore, problems with waste heat utilization and processing of fermentation residues (digestate) are described in more detail. Based on the research, multi-stage flash (MSF) evaporation was chosen as the technology for the digestate thickening. The main part deals with the integration of the chosen technology into a biogas plant process. The programming language Python was used to simplify the given task. In the preliminary stage, a complex mathematical model of a biogas plant was created, focusing particularly on the mass and energy balances. Subsequently, a computational model of the MSF evaporator was programmed. A procedure for the integration was suggested using the sensitivity analyses. Additionally, the model of a biogas plant was extended with the MSF evaporator. The key outcome of the thesis is a technical-economic analysis in which the impact of digestate transport price and electricity feed-in tariff on payback period is investigated. The results suggest profitability of MSF evaporator for biogas plants without subsidized feed-in tariff. Contrastingly, installation of MSF evaporator in older biogas plants with subsidized feed-in tariff can be economically viable only in cases of significantly longer transport distances.
7

Zařízení pro zahušťování odpadní vody z bioplynových stanic / Equipment for Thickening Waste Water from Biogas Plants

Vondra, Marek January 2017 (has links)
This dissertation thesis deals with the development of technology which could tackle two major issues related to biogas plants. These issues concern the insufficient use of waste heat from biogas combustion and its subsequent processing. It also concerns the use of the fermentation residues which are formed in large quantities and whose use is restricted by law. Based on a literary search of separation methods, a vacuum evaporator was selected as the most suitable technology. Its advantages include its simple construction, operational reliability and robustness, low costs of thickening medium pre-treatment, potential for a quick commercial application and, especially, the chance to use a low-potential waste heat. A primary purpose of this technological unit is the reduction in the volume of fermentation residues. Other benefits include the efficient use of waste heat from a biogas plant, which would otherwise be wasted. Evaporators with a low consumption of electrical energy (which is a main product of a biogas plant) seem to be the best option for applications in the biogas plants. Three of these technologies were subjected to a more thorough analysis, which included the development of computational models and their quantification for conditions in a sample biogas plant. A one-stage evaporator with a forced circulation (680 – 712 kWhth/m3, 25.9 – 30.5 kWhel/m3) was evaluated as the least suitable option in terms of energy demands. The energy intensity of a three-stage evaporator with a falling film (241 – 319 kWhth/m3, 12.0 – 23.6 kWhel/m3) and a nine-stage flash evaporator (236 – 268 kWhth/m3, 13.6 – 18.4 kWhel/m3) is significantly lower. A multi-stage flash evaporator (MSF) was then chosen for development and will form the central focus of this thesis. The reasons for the choice are as follows: the low requirements on the heat transfer surface, good operational experience in the field of desalination, its simple construction, modularity and evaporation outside the heat transfer surface. A thorough technical-economic evaluation was also performed on the integration of the evaporator into the biogas plant. The main part of the work included the experimental development of a MSF evaporator prototype. The main objective of this development was to achieve a stable flow rate of the thickening liquid digestate fraction and the continuous formation of the distillate. This was not an easy objective to achieve, especially due to the properties of the liquid digestate, which has a non-newtonian characteristic and increased density and viscosity compared to water. The tendency of the liquid digestate to form foam was also the subject of analysis. The development of the evaporator and first successful operational test are described in the thesis in detail. This required the use of an anti-foaming product. A fully-developed prototype of the MSF evaporator allowed us to achieve continuous operation with a distillate production, reaching from 5 to 10 kg/h at a liquid digestate flow rate of 0.4–0.5 m3/h. The main drawback of this technology is the pollution of the distillate with ammonia nitrogen, and it is for this reason that the basic procedures of its subsequent elimination was selected for further analysis.

Page generated in 0.0637 seconds