• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 35
  • 13
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 274
  • 274
  • 274
  • 68
  • 65
  • 53
  • 50
  • 39
  • 35
  • 30
  • 30
  • 29
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Binder-free oxide nanotube electrodes for high energy and power density 3D Li-ion microbatteries / Titanbaserade nanotuber för tredimensionella elektoder i litiumjonbatterier

Ihrfors, Charlotte January 2014 (has links)
This thesis covers synthesis and characterisation of TiO2 nanotubes and TiO2 / Li4Ti5O12 composite nanotubes. The aim was to build batteries with high areal capacity and good rate capability. TiO2 nanotubes were synthesized by two step anodization of titanium metal foil and the composite electrodes were synthesized through electrochemical lithiation of TiO2 nanotubes. To improve the battery performance the TiO2 nanotubes were annealed at 350 °C in air atmosphere, while the composite electrodes were annealed in argon at 550 °C. The longest TiO2 nanotubes were measured to 42.5 μm. The 40 μm long nanotubes displayed an areal capacity of 1.0 mAh/cm2 and a gravimetric capacity of 89 mAh/g. Nanotubes having a length of 10 μm had an areal capacity of 0.33 mAh/cm2 and a gravimetriccapacity of 130 mAh/g. When cycled at high rates, 10C, the capacity of the 40 μm nanotubes was 0.25 mAh/cm2, using a current density of 9.3 mA. The capacity of the 40 μm long nanotubes were higher than for the 10 μm long, but the increase was not proportional to the increase in length. A composite electrode was successfully synthesized and was found to have a capacity of 0.25 mAh/cm2 at a rate of C/5.
12

Lithium manganese oxide modified with copper-gold nanocomposite cladding- a potential novel cathode material for spinel type lithium-ion batteries

Nzaba, Sarre Kadia Myra January 2014 (has links)
>Magister Scientiae - MSc / Spinel lithium manganese oxide (LiMn2O4), for its low cost, easy preparation and nontoxicity, is regarded as a promising cathode material for lithium-ion batteries. However, a key problem prohibiting it from large scale commercialization is its severe capacity fading during cycling. The improvement of electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion (Robertson et al., 1997) at the surface of the spinel LiMn2O4 particles. These side reactions result in Mn2+ dissolution mainly at the surface of the cathode during cycling, therefore surface modification of the cathode is deemed an effective way to reduce side reactions. The utilization of a nanocomposite which comprises of metallic Cu and Au were of interest because their oxidation gives rise to a variety of catalytically active configurations which advances the electrochemical property of Li-ion battery. In this research study, an experimental strategy based on doping the LiMn2O4 with small amounts of Cu-Au nanocomposite cations for substituting the Mn3+ ions, responsible for disproportionation, was employed in order to increase conductivity, improve structural stability and cycle life during successive charge and discharge cycles. The spinel cathode material was synthesized by coprecipitation method from a reaction of lithium hydroxide and manganese acetate using 1:2 ratio. The Cu-Au nanocomposite was synthesized via a chemical reduction method using copper acetate and gold acetate in a 1:3 ratio. Powder samples of LiMxMn2O4 (M = Cu-Au nanocomposite) was prepared from a mixture of stoichiometric amounts of Cu-Au nanocomposite and LiMn2O4 precursor. The novel LiMxMn2O4 material has a larger surface area which increases the Li+ diffusion coefficient and reduces the volumetric changes and lattice stresses caused by repeated Li+ insertion and expulsion. Structural and morphological sample analysis revealed that the modified cathode material have good crystallinity and well dispersed particles. These results corroborated the electrochemical behaviour of LiMxMn2O4 examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The diffusion coefficients for LiMn2O4 and LiMxMn2-xO4 obtained are 1.90 x10-3 cm2 / s and 6.09 x10-3 cm2 / s respectively which proved that the Cu-Au nanocomposite with energy band gap of 2.28 eV, effectively improved the electrochemical property. The charge / discharge value obtained from integrating the area under the curve of the oxidation peak and reduction peak for LiMxMn2-xO4 was 263.16 and 153.61 mAh / g compared to 239.16 mAh / g and 120 mAh / g for LiMn2O4. It is demonstrated that the presence of Cu-Au nanocomposite reduced side reactions and effectively improved the electrochemical performance of LiMn2O4.
13

Fabrication and inorganic modification of 3D carbon nanotube structures for applications in energy storage

Jessl, Sarah January 2018 (has links)
Structured electrodes with tailored nanoscale morphology and chemistry are highly desirable for a range of applications. In particular, emerging energy storage applications such as thick Lithium-ion battery (LIB) electrodes and photoanodes for watersplitting require new electrode structures that simultaneously optimise electron, ion, and thermal transport. In this PhD thesis, advanced structured electrodes are fabricated by creating 3D carbon-inorganic hybrid architectures. In this process, patterned vertically aligned carbon nanotubes (CNT) were used as the structural scaffolds to shape the electrodes while inheriting the excellent thermal and electrical properties of CNTs. First, UV and colloidal lithographic patterning processes were developed to create micro- and nanopores respectively within the CNT structures. Those structures provide high surface area and conductive backbone for the synthesis of hybrid CNT-inorganic structures. Specifically, the parameter space to create honeycomb shaped CNT structures with pores ranging from 300~nm to 30~$\mu$m has been established. Next, the micro-pore CNT structures have been chemically modified with iron oxide using microwave-assisted, hydrothermal synthesis for fabricating high areal loading LIB anodes. The areal loading was increased by 120\% compared to a standard battery film while at the same time retaining a high capacity (900 mAhg$^{-1}$ at 0.2 C). Then thick electrodes with optimised diffusion pathways were created by coating the nanopatterned CNTs with silicon using physical vapour deposition. These electrode structures are up to 50\% thicker than previously reported structures and still retain a stable capacity (650 mAhg$^{-1}$) and a good high-rate performance. Finally, the honeycomb shaped CNT structures have been coated with bismuth vanadate using a hotcasting process and the electrode architecture has been optimized for good conductivity by the addition of a Pd/Au layer between the CNTs and the BiVO$_{4}$. The photoelectrode performance was measured and shows a clear increase in current density when exposed to light. Each of these novel electrodes illustrate how patterning vertically aligned carbon nanotube structures combined with inorganic surface modification enables the creation of advanced electrodes with new formfactors and improved performance in comparison to literature and to classic drop-casted battery films of the same materials.
14

New advanced electrode materials for lithium-ion battery

Li, Da January 2018 (has links)
This thesis includes five main studies/ first, in order to enhance the conductivity of LiTi204, a new doping strategy is used and LiTi204−xCx ramsdellite is successfully fabricated. It is found that unit cell parameters a and b decline while c increases with more carbon inserted. The conductivity of LiTi204−xCx increases with more carbon insertion. Material with more carbon shows better reversibility and lower electrochemical polarization observed from potentiostatic curve. The material has better retention rate and rate ability with more carbon substitute doped. LiTi203.925C0.0375 has 151 mAh∙g−1 capacity under current density of 100 mAh∙g−1 and capacity decreased by 5.57% after 100 cycles. Second, in order to improve the capacity of LiTi204−xCx, Ti204−xCx is successfully fabricated through topotactic oxidation. It is found that the lattice parameters b and c decline while a keeps stable. With more carbon inserted, the retention ability increases. Ti01.9625C0.0375 has the capacity 320 mAh∙g−1 under 200 mAh∙g−1 and capacity retention loss by 9.1% per 100 cycles due to the balance of high conductivity and disordered channel resistance. Third, in order to study the process of lithium insertion, the structures and the atom sites of LiTi204−xCx ( R ) are obtained through refinement of the neutron diffraction patterns. The unit cell parameters a and b increase while c keeps stable for more lithium, atoms insertion. The channels for lithium insertion become wider and more round with lithium arranged in a line when x rises in the range of 0 < x < 0.5. When the x increases to 1, the channels turn into ordered parallelogram. Fourth, the lithium-contained spinelloid (a potential cathode material) is explored, but it is not found in this work. But spinels LI1−0.5xFe2.5xM1−xP1−xO4 (M=Fe, Co, Ni, Mn) are found and phosphorous insertion makes the structure stable during cycling. At last, to enhance the energy density, the 3D electrode is fabricated in in-situ growth by infiltration method. By powder infiltration, the load of activity material reaches over 60% of electrode mass. The morphology is porous and the particle size of the activity material is 20nm. The energy density based on LiCoO2 (250 WH∙g−1) is much higher than that of the traditional (200 WH∙g−1) 2D electrode reported.
15

Avaliação da composição química do material ativo do cátodo de baterias de íon-Lítio exauridas após lixiviação com ácido cítrico e análise por ICP OES

ALMEIDA, J. R. 27 March 2017 (has links)
Made available in DSpace on 2018-08-01T21:58:48Z (GMT). No. of bitstreams: 1 tese_10827_Dissertação Jenifer Rigo Almeida - FINAL.pdf: 2105933 bytes, checksum: 17fccc5751be81765e75282388ce4b0c (MD5) Previous issue date: 2017-03-27 / Baterias de íon-Lítio (LIBs) exauridas são consideradas resíduos sólidos perigosos devido à presença de metais e compostos orgânicos em sua composição, representando desperdício de recursos naturais não renováveis e de metais valiosos quando descartadas. Este trabalho tem por objetivo fornecer dados quantitativos sobre a composição química do material ativo do cátodo (MAC) de diferentes LIBs exauridas visando monitorar variações com o passar dos anos e auxiliar nos processos de reciclagem do material. Os elementos Al, Co, Cr, Cu, Ga, Li, Mg, Mn, Ni, Ti e Zn foram determinados por espectrometria de emissão óptica com plasma indutivamente acoplado (ICP OES) após lixiviação ácida empregando 2,0 mol.L-1 de ácido cítrico (HCit) e H2O2 (0,25 mol.L-1) como alternativa ambientalmente favorável. As condições otimizadas para adequação do meio às curvas analíticas foram: para Al, Cu: Curva de HCit diluído 10 vezes sem padrão interno (PI); para Co, Li, Mn, Ni: Curva de HCit diluído 500 vezes sem PI; para Ga, Zn: Curva de HCit diluído 10 vezes com Y. O procedimento analítico empregado alcançou limites de detecção de 0,01 mg.L-1 para Al; 0,20 mg.L-1 para Co; 0,006 mg.L-1 para Cr; 0,02 mg.L-1 para Cu; 0,004 mg.L-1 para Ga; 0,02 mg.L-1 para Li; 0,0005 mg.L-1 para Mg; 0,07 mg.L-1 para Mn; 0,70 mg.L-1 para Ni; 0,0005 mg.L-1 para Ti e 0,007 mg.L-1 para Zn. A exatidão do procedimento foi confirmada por testes de adição e recuperação dos analitos obtendo-se valores entre 92-113 %. Os elementos majoritários Co (43-67 % m/m), Li (5,3-6,8 % m/m), Mn (0,8-8,2 % m/m), Ni (0,1-11,7 % m/m) e Al (0,06-3,2 % m/m) e os elementos minoritários Cr (0,0005-0,002 % m/m), Cu (0,01-0,05 % m/m), Mg (0,005-0,02 % m/m), Ti (0,001-0,07 % m/m), Ga (0,0009-0,03 % m/m) e Zn (0,009-0,05 % m/m) demonstraram que a composição do MAC pode variar de acordo com a capacidade e ano de fabricação. As baterias mais antigas foram as que apresentaram maiores teores de Co e Li. As baterias de menor capacidade foram as que continham os maiores teores de Mn e Ni, indicando que o Co foi substituído. O pó do MAC e o resíduo após lixiviação foram caracterizados por difratometria de raios X (DRX) obtendo-se LiCoO2 como composto principal, podendo ser reutilizado.
16

Electrofunctional ferrocene-containing metallopolymers for organic lithium-ion battery and organic resistive memory applications

Xiang, Jing 07 May 2016 (has links)
This thesis is dedicated to developing three different types of ferrocene-containing polymers for organic lithium-ion battery and resistive memory applications. Chapter 1 gives an overview of organic cathode-active materials, polymeric resistive memories and ferrocene-containing polymers. Furthermore, the previously reported applications of ferrocene-containing polymeric systems in electrochemical energy storage and electronical memory devices were also comprehensively summarized. In chapter 2, conjugated ferrocene-containing side-chain metallopolymers PFcFE1, PFcFE2, PFcFE3 and PFcFE4 were designed and synthesized via Sonogashira cross-coupling polycondensation. The charging-discharging processes of triphenyamine-based PFcFE1 and thiophene-modified PFcFE4 have been successfully studied as cathode materials. PFcFE1 composite electrode showed a capacity of 90 mAh g-1 and the cathode composed of PFcFE4 retained over 90% of the initial capacity after 100 charging-discharging cycles at 10 C. These results demonstrate the great potentials of these ferrocene-containing side-chain polymers as active cathode materials for organic lithium-ion battery applicaitons. Besides, all prepared ferrocene-containing metallopolymers PFcFE1, PFcFE2, PFcFE3 and PFcFE4 also exhibited nonvolatile resistive switching behaviors with the flash memory effect of PFcFE1, PFcFE2 and PFcFE3 as well as the WORM memory feature of PFcFE4, indicating the easily tuned memory properties by changing the chemical structures of the active polymeric backbones. It is also worth noting that the ITO/PFcFE1/Al memory device showed a high ON/OFF current ratio of 103 to 104, a low switch-on voltage of -1.0 V, a long retention time of 1000 s and a large read cycle number up to 105, which is superior to other reported ferrocene-containing memory examples. Chapter 3 focuses on the development of non-conjugated ferrocene-containing copolymers PVFVM1, PVFVM1-1, PVFVM2, PVFVM3, PVFVM4, PVFVM5 and PVFVM6 based on different heteroaromatic moieties which were prepared by AIBN initiated chain addition polymerization. The as-prepared copolymers PVFVM1 and PVFVM1-1 exhibited electrochemical characteristics of both ferrocene and triphenylamine pendants with reversible multiple redox waves at the half potentials of E1/2 = --0.06, 0.30, and 0.42 V (vs. Fc/Fc+). Notably, the composite electrode based on PVFVM1 afforded a discharge capacity of 102 mAh g--1 at 10 C, corresponding to 98% of its theoretical capacity. The cycle endurances of the active polymer electrodes composed of PVFVM1 or PVFVM1-1 were both evaluated for over 50 numbers and no significant capacity reduction over cycles were observed. On the other hand, initial I-V results of memory devices based on PVFVM1, PVFVM1-1, PVFVM2, PVFVM3, PVFVM4 and PVFVM6 also revealed their huge potentials in electronic information storage. The stability and reproducibility of the corresponding memory devices based on these materials will be futher evaluated in the near future. We used 1,1'-ferrocenediboronic acid bis(pinacol) ester to develop conjugated ferrocene-containing main-chain metallopolymers in chapter 4. All these rational designed metallopolymers FcMMP1, FcMMP2, FcMMP3 and FcMMP4 with one or two ferrocene moieties were produced via Suzuki cross-coupling polycondensation. Their structural information, molecular masses, photophysical features and thermal properties have been well studied. Electrochemical performances of the formed polymers were also examined to clarify their potential as cathode-active materials. Other charge-storage characteristics and switching behaviors of these prepared ferrocene-containing main-chain metallopolymers for organic battery and memory applications are under further investigation.
17

The Impact of Calendering on the Electronic Conductivity Heterogenity of Lithium-Ion Electrode Films

Hunter, Emilee Elizabeth 12 December 2020 (has links)
Advancements in Li-ion batteries are needed especially for the development of electric vehicles and stationary energy storage. Prior research has shown mesoscale variations in electrode electronic conductive properties, which can cause capacity loss and uneven electrochemical behavior of Li-ion batteries. A micro-four-line probe (μ4LP) was used to measure electronic conductivity and contact resistance over mm-length scales in that prior work. This work describes improvements to overcome the challenge of unreliable surface contact between theμ4LP and the sample. Ultimately a second generation flexible probe called the micro-radial-surface probe (μ4LP) was designed and produced. The test fixture was also optimized to obtain consistent contact with the new measurement probe and to perform measurements at a lower force. The μ4LP was then used to study the effect of heterogeneity on calendering, which is the compression of electrode films to obtain a uniform thickness and desired porosity. The thickness, electronic conductivity and contact resistance of two cathodes and one anode were measured before and after calendering. The the spatial standard deviation divided by the mean was used as a measure of heterogeneity. The results show variability in conductive properties increased for two of the three samples after calendering, despite the increased uniformity in thickness of the electrodes. This suggests that additional quality control metrics are needed besides thickness to be able to identify uneven degradation and produce longer lasting batteries.
18

The Impact of Calendering on the Electronic Conductivity Heterogenity of Lithium-Ion Electrode Films

Hunter, Emilee Elizabeth 12 December 2020 (has links)
Advancements in Li-ion batteries are needed especially for the development of electric vehicles and stationary energy storage. Prior research has shown mesoscale variations in electrode electronic conductive properties, which can cause capacity loss and uneven electrochemical behavior of Li-ion batteries. A micro-four-line probe (μ4LP) was used to measure electronic conductivity and contact resistance over mm-length scales in that prior work. This work describes improvements to overcome the challenge of unreliable surface contact between theμ4LP and the sample. Ultimately a second generation flexible probe called the micro-radial-surface probe (μ4LP) was designed and produced. The test fixture was also optimized to obtain consistent contact with the new measurement probe and to perform measurements at a lower force. The μ4LP was then used to study the effect of heterogeneity on calendering, which is the compression of electrode films to obtain a uniform thickness and desired porosity. The thickness, electronic conductivity and contact resistance of two cathodes and one anode were measured before and after calendering. The the spatial standard deviation divided by the mean was used as a measure of heterogeneity. The results show variability in conductive properties increased for two of the three samples after calendering, despite the increased uniformity in thickness of the electrodes. This suggests that additional quality control metrics are needed besides thickness to be able to identify uneven degradation and produce longer lasting batteries.
19

Regeneration of Cathode Materials from Used Li-ion Batteries via a Direct Recycling Process

Zurange, Hrishikesh 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / With the exponential rise in manufacturing and usage of Li-ion batteries (LIBs) in the last decade, a huge quantity of spent LIBs is getting scrapped every year. Along with the efforts to making more capable and safer batteries over the last three decades, there is an immediate need for recycling these scrapped batteries. Most of these batteries typically use lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium iron phosphate (LFP), and lithium nickel manganese cobalt oxide (NMC) cathode chemistries, and developing a technique towards regenerating these cathodes can ensure huge economic and environmental benefits for the present and future. This research focuses on a set of direct regeneration techniques with the goal of regenerating used cathode materials to be reused in LIBs. Used Apple iPad2 batteries with LCO chemistry and Nissan LEAF batteries with a combination of LMO-NMC chemistry are selected for this research. The scope of research can be divided into two parts as liberation/separation of cathode material and regeneration of liberated cathode. The liberation/separation process is carried out with the aid of ultrasonication and organic solvents with the objective being keeping the morphology and chemical composition intact for a better quality of the material. The regeneration process uses a hydrothermal technique with variations of parameters. 1:1 and 1:5 molar ratios between cathode material and a lithium lithiation agent are chosen to understand the effects of the molar ratio on cathode regeneration. In addition, the effects of processing solution (water vs. a solvent) are examined by replacing water with TEG. The effects of heat treatment on cathode regeneration are also investigated by observing phase changes of materials at different temperatures.
20

Evaluation of the Cycle Profile Effect on the Degradation of Commercial Lithium Ion Batteries

Radhakrishnan, Karthik Narayanan 14 September 2017 (has links)
Major vehicle manufacturers are committed to expand their electrified vehicle fleet in upcoming years to meet fuel efficiency goals. Understanding the effect of the charge/discharge cycle profiles on battery durability is important to the implementation of batteries in electrified vehicles and to the design of appropriate battery testing protocols. In this work, commercial high-power prismatic lithium ion cells were cycled using a pulse-heavy profile and a simple square-wave profile to investigate the effect of cycle profile on the capacity fade of the battery. The pulse-heavy profile was designed to simulate on-road conditions for a typical hybrid electric vehicle, while the simplified square-wave profile was designed to have the same charge throughput as the pulse-heavy profile, but with lower peak currents. The batteries were cycled until each battery achieved a combined throughput of 100 kAh. Reference Performance Tests were conducted periodically to monitor the state of the batteries through the course of the testing. The results indicate that, for the batteries tested, the capacity fade for the two profiles was very similar and was 11 % ± 0.5 % compared to beginning of life. The change in internal resistance of the batteries over the course of the testing was also monitored and found to increase 21% and 12% compared to beginning of life for the pulse-heavy and square-wave profiles respectively. Cycling tests on coin cells with similar electrode chemistries as well as development of a first principles, physics based model were done in order to understand the underlying cause of the observed degradation. The results from the coin cells and the model suggest that the loss of active material in the electrodes due to the charge transfer process is the primary cause of degradation while the loss of cyclable lithium due to side reactions plays a secondary role. These results also indicate that for high power cells, the capacity degradation associated with the charge-sustaining mode of operation can be studied with relatively simple approximations of complex drive cycles. / Ph. D. / Major vehicle manufacturers are committed to expand their electrified vehicle fleet in upcoming years to meet fuel efficiency goals. Understanding the effect of the charge/discharge cycle profiles on battery durability is important to the implementation of batteries in electrified vehicles and to the design of appropriate battery testing protocols. In this work, commercial lithium ion cells were tested using two profiles with the same energy transfer; a pulse-heavy profile to simulate on-road conditions for a typical hybrid electric vehicle, and a simplified square-wave profile with the same charge flow as the pulse-heavy profile, but with lower currents. Cycling tests on coin cells with similar electrode chemistries as well as development of a first principles, physics based model were done in order to understand the underlying cause of the degradation. The results suggest that the degradation observed is not dependent on the type of profile used. These results also indicate that for high power cells, the capacity degradation associated with the charge-sustaining mode of operation can be studied with relatively simple approximations of complex drive cycles.

Page generated in 0.088 seconds