• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 774
  • 774
  • 400
  • 337
  • 201
  • 134
  • 134
  • 95
  • 92
  • 78
  • 75
  • 72
  • 70
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Development of sulfur-polyacrylonitrile/graphene composite cathode for lithium batteries

Li, Jing January 2013 (has links)
Rechargeable lithium sulfur (Li-S) batteries are potentially safe, environmentally friendly and economical alternative energy storage systems that can potentially be combined with renewable sources including wind solar and wave energy. Sulfur has a high theoretical specific capacity of ~1680 mAh/g, attainable through the reversible redox reaction denoted as S8+16Li ↔8Li¬2S, which yields an average cell voltage of ~2.2 V. However, two detrimental factors prevent the achievement of the full potential of the Li-S batteries. First, the poor electrical/ionic conductivity of elemental sulfur and Li2S severely hampers the utilization of active material. Second, dissolution of intermediate long-chain polysulfides (Li2Sn, 2<n<7) into the electrolyte and their shuttle between cathode and anode lead to fast capacity degradation and low Coulombic efficiency. As a result of this shuttle process, insoluble and insulating Li2S/Li2S2 precipitate on the surface of electrodes causing loss of active material and rendering the electrode surface electrochemically inactive. Extensive research efforts have been devoted to overcome the aforementioned problems, such as combination of sulfur with conductive polymers, and encapsulation or coating of elemental sulfur in different nanostructured carbonaceous materials. Noteworthy, sulfur-polyacrylonitrile (SPAN) composites, wherein sulfur is chemically bond to the polymer backbone and PAN acts as a conducting matrix, have shown some success in suppressing the shuttle effect. However, due to the limited electrical conductivity of polyacrylonitrile, the capacity retention and rate performance of the SPAN systems are still very modest, which shows only 67 % retention of the initial capacity after 50 cycles for the binary system. Recently, graphene has been intensively investigated for enhancing the rate and cycling performance of lithium sulfur batteries. Graphene, which has a two-dimensional, one-atom-thick nanosheet structure, offers extraordinary electronic, thermal and mechanical properties. Herein, a sulfur-polyacrylonitrile/reduced graphene oxide (SPAN/RGO) composite with unique electrochemical properties was prepared. PAN is deposited on the surface of RGO sheets followed by ball milling with sulfur and heat treatment. Infrared spectroscopy and microscopy studies indicate that the composite consists of RGO decorated with SPAN particles of 100 nm average size. The PAN/RGO composite shows good overall electrochemical performance when used in Li/S batteries. It exhibits ~85% retention of the initial reversible capacity of 1467 mAh/g over 100 cycles at a constant current rate of 0.1 C and retains 1100 mAh/g after 200 cycles. In addition, the composite displays excellent Coulombic efficiency and rate capability, delivering up to 828 mAh/g reversible capacity at 2 C. The improved performance stems from composition and structure of the composite, wherein RGO renders a robust electron transport framework and PAN acts as sulfur/polysulfide absorber.
282

Design of a Battery State Estimator Using a Dual Extended Kalman Filter

Wahlstrom, Michael January 2010 (has links)
Today's automotive industry is undergoing significant changes in technology due to economic, political and environmental pressures. The shift from conventional internal combustion vehicles to hybrid and plug in hybrid electric vehicles brings with it a new host of technical challenges. As the vehicles become more electrified, and the batteries become larger, there are many difficulties facing the battery integration including both embedded control and supervisory control. A very important aspect of Li-Ion battery integration is the state estimation of the battery. State estimation can include multiple states, however the two most important are the state of charge and state of health of the battery. Determining an accurate state of charge estimation of a battery has been an important part of consumer electronics for years now [1]. In small portable electronics, the state of charge of the battery is used to determine the time remaining on the current battery charge. Although difficult, the estimation is simplified by the relatively low charge and discharge currents (approximately + 3C) of the devices and the non-dynamic duty cycle. Hybrid vehicle battery packs can reach much higher charge and discharge currents (+ 20C) [2]. This higher current combined with a very dynamic duty cycle, large changes in temperature, longer periods without usage and long life requirements make state of charge estimation in Hybrid Electric Vehicles (HEV) much more difficult. There have been a host of methods employed by various previous authors. One of the most important factors in state of charge estimation is having an accurate estimation of the actual capacity (depending on state of health) of the battery at any time [3]. Without having an understanding of the state of health of the battery, the state of charge estimation can vary greatly. This paper proposes a state of charge and state of health estimation based on a dual Extended Kalman Filter (EKF). Employing an EKF for the state estimation of the battery pack not only allows for enhanced accuracy of the estimation but allows the control engineer to develop vehicle performance criteria based not only on the state of charge estimation, but also the state of health.
283

Functional Materials for Rechargeable Li Battery and Hydrogen Storage

He, Guang January 2012 (has links)
The exploration of functional materials to store renewable, clean, and efficient energies for electric vehicles (EVs) has become one of the most popular topics in both material chemistry and electrochemistry. Rechargeable lithium batteries and fuel cells are considered as the most promising candidates, but they are both facing some challenges before the practical applications. For example, the low discharge capacity and energy density of the current lithium ion battery cannot provide EVs expected drive range to compete with internal combustion engined vehicles. As for fuel cells, the rapid and safe storage of H2 gas is one of the main obstacles hindering its application. In this thesis, novel mesoporous/nano functional materials that served as cathodes for lithium sulfur battery and lithium ion battery were studied. Ternary lithium transition metal nitrides were also synthesized and examined as potential on-board hydrogen storage materials for EVs. Highly ordered mesoporous carbon (BMC-1) was prepared via the evaporation-induced self-assembly strategy, using soluble phenolic resin and Tetraethoxysilane (TEOS) as precursors and triblock copolymer (ethylene oxide)106(propylene oxide)70(ethylene oxide)106 (F127) as the template. This carbon features a unique bimodal structure (2.0 nm and 5.6 nm), coupled with high specific area (2300 m2/g) and large pore volume (2.0 cm3/g). The BMC-1/S nanocomposites derived from this carbon with different sulfur content exhibit high reversible discharge capacities. For example, the initial capacity of the cathode with 50 wt% of sulfur was 995 mAh/g and remains at 550 mAh/g after 100 cycles at a high current density of 1670 mA/g (1C). The good performance of the BMC-1C/S cathodes is attributed to the bimodal structure of the carbon, and the large number of small mesopores that interconnect the isolated cylindrical pores (large pores). This unique structure facilitates the transfer of polysulfide anions and lithium ions through the large pores. Therefore, high capacity was obtained even at very high current rates. Small mesopores created during the preparation served as containers and confined polysulfide species at the cathode. The cycling stability was further improved by incorporating a small amount of porous silica additive in the cathodes. The main disadvantage of the BMC-1 framework is that it is difficult to incorporate more than 60 wt% sulfur in the BMC-1/S cathodes due to the micron-sized particles of the carbon. Two approaches were employed to solve this problem. First, the pore volume of the BMC-1 was enlarged by using pore expanders. Second, the particle size of BMC-1 was reduced by using a hard template of silica. Both of these two methods had significant influence on improving the performance of the carbon/sulfur cathodes, especially the latter. The obtained spherical BMC-1 nanoparticles (S-BMC) with uniform particle size of 300 nm exhibited one of the highest inner pore volumes for mesoporous carbon nanoparticles of 2.32 cm3/g and also one of the highest surface areas of 2445 m2/g with a bimodal pore size distribution of large and small mesopores of 6 nm and 3.1 nm. As much as 70 wt% sulfur was incorporated into the S-BMC/S nanocomposites. The corresponding electrodes showed a high initial discharge capacity up to 1200 mAh/g and 730 mAh/g after 100 cycles at a high current rate 1C (1675 mA/g). The stability of the cells could be further improved by either removal of the sulfur on the external surface of spherical particles or functionalization of the C/S composites via a simple TEOS induced SiOx coating process. In addition, the F-BMC/S cathodes prepared with mesoporous carbon nanofibers displayed similar performance as the S-BMC/S. These results indicate the importance of particle size control of mesoporous carbons on electrochemical properties of the Li-S cells. By employing the order mesoporous C/SiO2 framework, Li2CoSiO4/C nanocomposites were synthesized via a facile hydrothermal method. The morphology and particle size of the composites could be tailored by simply adjusting the concentrations of the base LiOH. By increasing the ratio of LiOH:SiO2:CoCl2 in the precursors, the particle size decreased at first and then went up. When the molar ratio is equal to 8:1:1, uniform spheres with a mean diameter of 300-400 nm were obtained, among which hollow and core shell structures were observed. The primary reaction mechanism was discussed, where the higher concentration of OH- favored the formation of Li2SiO3 but hindered the subsequent conversion to Li2CoSiO4. According to the elemental maps and TGA of the Li2CoSiO4/C, approximately 2 wt% of nanoscale carbon was distributed on/in the Li2CoSiO4, due to the collapse of the highly ordered porous structure of MCS. These carbons played a significant role in improving the electrochemical performance of the electrode. Without any ball-mill or carbon wiring treatments, the Li2CoSiO4/C-8 exhibited an initial discharge capacity of 162 mAh/g, much higher than that of the sample synthesized with fume silica under similar conditions and a subsequent hand-mixing of Ketjen black. Finally, lithium transition metal nitrides Li7VN4 and Li7MnN4 were prepared by high temperature solid-state reactions. These two compounds were attempted as candidates for hydrogen storage both by density functional theory (DFT) calculations and experiments. The results show that Li7VN4 did not absorb hydrogen under our experimental conditions, and Li7MnN4 was observed to absorb 7 hydrogen atoms through the formation of LiH, Mn4N, and ammonia gas. While these results for Li7VN4 and Li7MnN4 differ in detail, they are in overall qualitative agreement with our theoretical work, which strongly suggests that both compounds are unlikely to form quaternary hydrides.
284

Synthesis, Electrochemistry and Solid-Solution Behaviour of Energy Storage Materials Based on Natural Minerals

Ellis, Brian January 2013 (has links)
Polyanionic compounds have been heavily investigated as possible electrode materials in lithium- and sodium-ion batteries. Chief among these is lithium iron phosphate (LiFePO4) which adopts the olivine structure and has a potential of 3.5 V vs. Li/Li+. Many aspects of ion transport, solid-solution behaviour and their relation to particle size in olivine systems are not entirely understood. Morphology, unit cell parameters, purity and electrochemical performance of prepared LiFePO4 powders were greatly affected by the synthetic conditions. Partially delithiated olivines were heated and studied by Mössbauer spectroscopy and solid-solution behaviour by electron delocalization was observed. The onset of this phenomenon was around 470-500 K in bulk material but in nanocrystalline powders, the onset of a solid solution was observed around 420 K. The isostructural manganese member of this family (LiMnPO4) was also prepared hydrothermally. Owing to the thermal instability of MnPO4, partially delithiated LiMnPO4 did not display any solid-solution behaviour. Phosphates based on the tavorite (LiFePO4OH) structure include LiVPO4F and LiFePO4(OH)1-xFx which may be prepared hydrothermally or by solid state routes. LiVPO4F is a high capacity (2 electrons/transition metal) electrode material and the structures of the fully reduced Li2VPO4F and fully oxidized VPO4F were ascertained. Owing to structural nuances, the potential of the iron tavorites are much lower than that of the olivines. The structure of Li2FePO4F was determined by a combined X-ray and neutron diffraction analysis. The electrochemical properties of very few phosphates based on sodium are known. A novel fluorophosphate, Na2FePO4F, was prepared by both solid state and hydrothermal methods. This material exhibited two two-phase plateau regions on cycling in a half cell versus sodium but displayed solid-solution behaviour when cycled versus lithium, where the average potential was 3.3 V. On successive cycling versus Li a decrease in the sodium content of the active material was observed, which implied an ion-exchange reaction occurred between the material and the lithium electrolyte. Studies of polyanionic materials as positive electrode materials in alkali metal-ion batteries show that some of these materials, namely those which contain iron, hold the most promise in replacing battery technologies currently available.
285

Amorphous Al-transition Metal Alloys as Anode Material for Lithium Ion Battery

Wang, C.Y., Ceder, Gerbrand, Li, Yi 01 1900 (has links)
Al based alloy powders (Al₈₅Ni₅Y₆Co₂Fe₂) are produced by spray atomization method. High energy ball milling is done to modify the surface topology and particle size for better electrochemical performance. X ray diffraction (XRD), differential scanning calorimeter (DSC), scanning electron microscope (SEM) and transmission electron microscope (TEM) were conducted to characterize the microstructure of the alloys after ball milling. It is found that 5 hours ball milling gives the minimum crystallization and structure change. Thin film sample is also deposited on stainless steel substrate by pulsed laser deposition (PLD) method for electrochemical test. The capacity and reversibility for different samples are compared and discussed. A capacity of 200mAh/g is obtained for the battery with thin film sample as anode and a capacity of 140mAh/g is obtained for that with electrode from powder sample. Both of the batteries give up to 94% capacity retention after 20 cycles. / Singapore-MIT Alliance (SMA)
286

Finite Element Analysis of Silicon Thin Films on Soft Substrates as Anodes for Lithium Ion Batteries

January 2011 (has links)
abstract: The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing its energy density, and by changing the electrode materials, greater energy capacities can be realized. Silicon (Si) is a very attractive option because it has the highest known theoretical charge capacity. Current Si anodes, however, suffer from early capacity fading caused by pulverization from the stresses induced by large volumetric changes that occur during charging and discharging. An innovative system aimed at resolving this issue is being developed. This system incorporates a thin Si film bonded to an elastomeric substrate which is intended to provide the desired stress relief. Non-linear finite element simulations have shown that a significant amount of deformation can be accommodated until a critical threshold of Li concentration is reached; beyond which buckling is induced and a wavy structure appears. When compared to a similar system using rigid substrates where no buckling occurs, the stress is reduced by an order of magnitude, significantly prolonging the life of the Si anode. Thus the stress can be released at high Li-ion diffusion induced strains by buckling the Si thin film. Several aspects of this anode system have been analyzed including studying the effects of charge rate and thin film plasticity, and the results are compared with preliminary empirical measurements to show great promise. This study serves as the basis for a radical resolution to one of the few remaining barriers left in the development of high performing Si based electrodes for Li-ion batteries. / Dissertation/Thesis / Appendix H - Movies (zipped) / M.S. Mechanical Engineering 2011
287

Surface Stress during Electro-Oxidation of Carbon Monoxide and Bulk Stress Evolution during Electrochemical Intercalation of Lithium

January 2011 (has links)
abstract: This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses correlate strongly with adsorption charge. Electrocatalytic oxidation of CO on Pt{111} and Ru/Pt{111} gives a tensile surface stress. A numerical method was developed to separate both current and stress into background and active components. Applying this model to the CO oxidation signal on Ru{0001} gives a tensile surface stress and elucidates the rate limiting steps on all three electrodes. The enhanced catalysis of Ru/Pt{111} is confirmed to be bi-functional in nature: Ru provides adsorbed hydroxide to Pt allowing for rapid CO oxidation. The majority of Li-ion batteries have anodes consisting of graphite particles with polyvinylidene fluoride (PVDF) as binder. Intercalation of Li into graphite occurs in stages and produces anisotropic strains. As batteries have a fixed size and shape these strains are converted into mechanical stresses. Conventionally staging phenomena has been observed with X-ray diffraction and collaborated electrochemically with the potential. Work herein shows that staging is also clearly observed in stress. The Li staging potentials as measured by differential chronopotentiometry and stress are nearly identical. Relative peak heights of Li staging, as measured by these two techniques, are similar during reduction, but differ during oxidation due to non-linear stress relaxation phenomena. This stress relaxation appears to be due to homogenization of Li within graphite particles rather than viscous flow of the binder. The first Li reduction wave occurs simultaneously with formation of a passivating layer known as the solid electrolyte interphase (SEI). Preliminary experiments have shown the stress of SEI formation to be tensile (~+1.5 MPa). / Dissertation/Thesis / Deconvolution programm - see Appendix C / ECdata4 program - see Appendix C / Ph.D. Materials Science and Engineering 2011
288

Preparação e caracterização de óxido de zinco nanoestruturado /

Zanatta, Camilla dos Santos. January 2009 (has links)
Orientador: Dayse Iara dos Santos / Banca: Manuel Henrique Leite / Banca: Alejandra Hortencia Miranda González / Resumo: Materiais nanoestruturados vêm sendo amplamente estudados pela comunidade científica, devido às suas propriedades únicas obtidas com o controle da síntese dos materiais. Por meio do controle experimental, esses materiais podem ser utilizados em numerosas áreas, tais como na eletrônica e na fotônica. Dentre os vários métodos químicos, o processo poliol vem sendo utilizado devido à fácil obtenção de nanopartículas de óxidos e metais na sua forma elementar. O presente trabalho teve como objetivo a síntese do óxido de zinco nanoestruturado por meio do método poliol. Diferentes precursores metálicos, tais como acetato de zinco dihidratado, nitrato de zinco hexahidratado, sulfato de zinco monohidratado e cloreto de zinco anidro e diferentes tempos de permanência da síntese foram utilizados para verificar possíveis interferências dos ânions precursores na síntese e na morfologia do óxido de zinco quando obtido. Os materiais obtidos das sínteses foram caracterizados por difração de raios X (DRX), análises térmicas (TG/DTA), medidas de adsorção de gás nitrogênio, microscopia eletrônica de varredura (MEV), microscopia eletrônica de varredura de alta resolução (MEV-FEG) e cronopotenciometria. Por meio destas técnias mostrou-se a viabilidade da obtenção do óxido de zinco nanoestruturado dd maneira direta a partir do acetato de zinco, através de refluxo em etilenoglicol por 2, 4 e 8 horas seguido de lavagem e centrifugação. A menor nanoestrutura encontrada apresentou partículas com dimensão de aproximadamente 25 nm e formato poliédrico, as quais foram observadas pelo FEG. A técnica de cronopotenciometria, representada por meio das curvas de carga/descarga mostraram que a utilização do compósito contendo o óxido de zinco sintetizado apresenta melhores resultados quando comparados ao uso... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Nanostructered materials have been extensively studied by the scientific community due to their unique properties obtained by controlled synthesis of materials. By means of the control of parameters, this new materials can be used in a number of applications in electronic and photonic technology. Among the several methods to obtain nanoparticles or nanostructured materials, the polyol method has been applied because it shows easy procedures to produce nanostructured oxides and elemental metals. The aim of this work is the synthesis of nanostructured zinc oxide, one of the most multifunctional oxides, by the polyol method. Different precursors salts like zinc acetate dihydrate, zinc nitrate hexahydrate, zinc sulfate monohydrate and zinc chloride anhydrate, as well as several times of reflux, were used to investigate the influence of the precursos anions on the synthesis and on the morphology of the crystals of zinc oxide whenever produced. The obtained powders were characterized by X-ray diffraction (DRX), thermal analyses (TG/DTA), and measurements of 'N IND. 2' gas adsorption, scanning electronic and field emission microscopy (MEV and FEG) and chronopotentiometry. These techniques showed the possibility of producing nanostructured zinc oxide in direct way from the reflux in etylenglycol for 2, 4 and 8 hours, followed by washing and centrifugation. The smallest nanostructure observed by FEG presented around 25 nm polyhedral particles. The chronopotentiometry, present charge/discharge curves showing better results for the electrode made of polimer composite containing ZnO nanoparticles than the obtaining results for the oxide alone. The best results showed reversibility of the lithium-ion cell upon 20 cycles, applying 3 μΑ electric current and showing a charge potential up to 4.2 V. / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Mestre
289

Reduced graphene oxide nanoparticle hybrids and their assembly for lithium-ion battery anodes

Modarres, Mohammad Hadi January 2018 (has links)
Lithium-ion batteries (LIBs) are an integral part of consumer electronic devices and electric vehicles. There is a growing need for LIBs with higher capacity, rate performance and cycling stability. At the anode electrode these challenges are being addressed for instance by utilising materials with higher theoretical capacity compared to graphite (372 mAh/g) or by optimising the morphology of materials through nanostructuring of the electrode. In this thesis the former is investigated by synthesising a reduced graphene oxide (rGO) tin sulphide (SnS2) hybrid, and the latter by self-assembly of rGO sodium titanate and rGO titanium dioxide (TiO2) nanorods. In Chapter 2, SnS2 is investigated due to its high theoretical capacity as an anode material (645 mAh/g), low cost and environmental benignity. SnS2 nanoparticles were grown directly on rGO sheets which provide a conductive framework and limit the detachment of tin particles which undergo large volume changes during alloying reactions. However, a fast decrease in capacity was observed. Post-mortem analysis of the electrodes showed that rGO becomes irreversibly passivated suggesting that additional measures to retain effective charge transport between the low weight percent conductive additive and the active phase during cycling are required. An alternative material system based on nanorods of intercalation materials (sodium titanate and TiO2) wrapped by rGO sheets was chosen to investigate self-assembly in anodes to address the low packing density of nanomaterials. A drop-casting method was used to align rGO-sodium titanate nanorods through evaporation driven self-assembly (Chapter 3) which relies on a combination of electrostatic repulsive forces originating from the rGO coating, and liquid crystal phase formation at high concentrations, facilitated by the high aspect ratio nanorods. As reference, non-aligned films were prepared by adjusting the pH of the nanorod dispersion. Freestanding aligned and non-aligned films were converted to rGO-TiO2 (Chapter 4). The volumetric capacity of the self-assembled films was double that of non-aligned films, and up to 4.5 times higher than traditional casted electrodes using the same material. Further, up to rates of 4 C, the self-assembled films outperformed the non-aligned films. These films showed no sign of capacity fading up to 1000 cycles, which together with post-mortem analysis confirms that these assembled structures are maintained during battery cycling.
290

Studies of Origami and Kirigami and Their Applications

January 2016 (has links)
abstract: Origami and Kirigami are two traditional art forms in the world. Origami, from ‘ori’ meaning folding, and ‘kami’ meaning paper is the art of paper folding. Kirigami, from ‘kiri’ meaning cutting, is the art of the combination of paper cutting and paper folding. In this dissertation, Origami and kirigami concepts were successively utilized in making stretchable lithium ion batteries and three-dimensional (3D) silicon structure which both provide excellent mechanical characteristics. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2016

Page generated in 0.0683 seconds