• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 9
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 98
  • 98
  • 80
  • 27
  • 18
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Live Cell Imaging of CEACAM1 Dynamics and Self-association during Bacterial Binding

Downie, Kelsey Jean 22 November 2013 (has links)
The carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) is a human receptor that facilitates adhesion with neighbouring cells, as well as with certain pathogens. CEACAM1 at the cell surface exists as a mixture of monomers and dimers in a heterogeneous distribution that is thought to regulate the balance of its functions, including those associated with pathogen binding. We used live cell fluorescence and homogeneous Förster resonance energy transfer (homo-FRET) microscopy on a combined total internal reflection fluorescence polarization (TIRFPM) confocal microscopy platform to investigate the distribution, dynamics, and monomer-dimer equilibrium of CEACAM1-4L-EYFP on live cells that were parachuted onto surfaces coated with CEACAM1-binding Neisseria gonorrhoea. Both CEACAM1-4L-EYFP and a monomeric mutant form of the receptor are rapidly recruited to bacteria and lead to downstream effector recruitment. Homo-FRET data indicate that wild-type CEACAM1-4L-EYFP was predominantly monomeric at bacterial contact sites. Preferential monomeric binding during bacterial adhesion controls the infection process.
2

Live Cell Imaging of CEACAM1 Dynamics and Self-association during Bacterial Binding

Downie, Kelsey Jean 22 November 2013 (has links)
The carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) is a human receptor that facilitates adhesion with neighbouring cells, as well as with certain pathogens. CEACAM1 at the cell surface exists as a mixture of monomers and dimers in a heterogeneous distribution that is thought to regulate the balance of its functions, including those associated with pathogen binding. We used live cell fluorescence and homogeneous Förster resonance energy transfer (homo-FRET) microscopy on a combined total internal reflection fluorescence polarization (TIRFPM) confocal microscopy platform to investigate the distribution, dynamics, and monomer-dimer equilibrium of CEACAM1-4L-EYFP on live cells that were parachuted onto surfaces coated with CEACAM1-binding Neisseria gonorrhoea. Both CEACAM1-4L-EYFP and a monomeric mutant form of the receptor are rapidly recruited to bacteria and lead to downstream effector recruitment. Homo-FRET data indicate that wild-type CEACAM1-4L-EYFP was predominantly monomeric at bacterial contact sites. Preferential monomeric binding during bacterial adhesion controls the infection process.
3

Development of a microfluidic device for single cell analysis using FT-IR microscopy

Ball, Francis John January 2013 (has links)
Prostate cancer is the second most common cause of cancer fatalities in males in the UK (2006) [1]. Therefore any advances in the diagnosis or screening for this form of cancer will yield significant benefits in the treatment of this disease. FT-IR has already been successfully used to assess and grade prostate biopsies by Gazi et al 2006 [2]. The collection of prostate biopsy is however a highly invasive procedure and as current screening methods are highly sensitive, but not very specific, large numbers of patients are referred for biopsy procedures that later come back as negative for prostate cancer [3]. Harvey et al used Raman spectroscopy to classify live cells of a number of prostate cell lines as a first step towards a possible urine screening protocol for prostate cancer [3]. Due to the complementary nature of Raman and FT-IR spectroscopy a similar live cell study should be possible using FT-IR and the combination of this technique with a high-throughput microfluidic device could lead to a useful screening tool for prostate cancer.The aim of the project was therefore to develop a microfluidic system which would enable higher through-put FT-IR analysis of live single cells in an aqueous carrier solution such as PBS or urine than has been previously possible. The design of the microfluidic device must also account for the fact that the materials used to produce the analysis chamber must be highly transparent to mid-IR radiation. The microfluidic device and peripheral systems must be easily transportable as it will be necessary to perform experiments in multiple locations. A design and manufacturing protocol for such a device has been developed.The development of a spectral contribution removal algorithm for the aqueous carrier fluid will also be necessary in order to allow the accurate interpretation of the IR data obtained. A least squares fitting based spectral subtraction algorithm was developed and validated for this purpose.Although it did not prove possible during the project to investigate the possible application of this device to a prostate cancer screening protocol other applications in cell line classification and drug cell interaction studies were performed and yielded encouraging results.
4

Structure and dynamics of stress fibers in adult stem cells

Wollnik, Carina 20 April 2016 (has links)
No description available.
5

Development and analysis of recombinant fluorescent probes for use in live cell imaging of filamentous fungi

Altenbach, Kirsten January 2010 (has links)
The molecular cloning and subsequent engineering of the green fluorescent protein (GFP) of the jellyfish Aequoria victoria allowed a novel approach to the investigation of cell signalling. GFP and its mutants can now not only be used to target specific organelles in living cells but also function as a basis for a variety of sensors for biologically important ions and molecular interactions. GFP-based Ca2+- sensors have been successfully used for studies in mammalian and plant cells. In filamentous fungi, however, they have not yet been reported to work. Since only little is known about calcium signalling in filamentous fungi, this project aimed to improve existing GFP-based Ca2+- sensors by exchanging the original fluorophores for improved versions and expressing those in the filamentous fungus Aspergillus niger. During this project, the donor and acceptor fluorophores of 3 existing Ca2+-FRETprobes based on cameleons and troponin C-sensors, have been changed, 2 novel positive FRET controls have been designed and these , as well as donor and acceptor fluorophores alone, have been expressed in the filamentous fungus Aspergillus niger. The probes were assessed using different imaging techniques, such as conventional confocal laser scanning microscopy (CLSM), fluorescence lifetime imaging microscopy (FLIM) and spectral imaging using a Leica TSC SP5 confocal and IRIS, a novel spectral imaging device designed at Heriot Watt University. Problems were encountered that prevented FRET analysis using CLSM and IRIS. These were due mainly to the difference in expression level of the constructs and the distribution of the emission bandpasses of the IRIS system. Analysis of the spectral data obtained on the Leica confocal system and analysis of the FLIM results, however, revealed significant differences between the donor only and the positive FRET controls. Spectra of the positive FRET controls and the Ca2+-sensitive probes showed emission peaks of both the donor and the acceptor fluorophores upon excitation of the donor fluorophore alone while analysis of the FLIM results revealed an additional decay component in the positive FRET controls. Both results are very strong indicators that we can detect FRET in living hyphae of Aspergillus niger transformed with the probes designed during this project.
6

Development of High-throughput and Robust Microfluidic Live Cell Assay Platforms for Combination Drug and Toxin Screening

Wang, Han 2011 December 1900 (has links)
Combination chemotherapies that introduce multi-agent treatments to target cancer cells are emerging as new paradigms to overcome chemotherapy resistance and side effects involved with conventional monotherapies. In environmental toxicology, characterizing effects of mixtures of toxins rather than simply analyzing the effect of single toxins are of significant interest. In order to determine such combination effects, it is necessary to systematically investigate interactions between different concentration-dependent components of a mixture. Conventional microtiter plate format based assays are efficient and cost-effective, however are not practical as the number of combinations increases drastically. Although robotic pipetting systems can overcome the labor-intensive and time-consuming limitations, they are too costly for general users. Microfluidic live cell screening platforms can allow precise control of cell culture microenvironments by applying accurate doses of biomolecular mixtures with specific mixing ratios generated through integrated on-chip microfluidic gradient generators. This thesis first presents a live cell array platform with integrated microfluidic network-based gradient generator which enables generation and dosing of 64 unique combinations of two cancer drugs at different concentrations to an 8 by 8 cell culture chamber array. We have developed the system into a fully automated microfluidic live cell screening platform with uniform cell seeding capability and pair-wise gradient profile generation. This platform was utilized to investigate the gene expression regulation of colorectal cancer cells in response to combination cancer drug treatment. The resulting cell responses indicate that the two cancer drugs show additive effect when sequential drug treatment scheme is applied, demonstrating the utility of the microfluidic live cell assay platform. However, large reagent consumption and difficulties of repeatedly generating the exact same concentrations and mixture profiles from batch to batch and device to device due to the fact that the generated gradient profiles or mixing ratios of chemicals have to rely on stable flow at optimized flow rate throughout the entire multi-day experiment limit the widespread use of this method. Moreover, producing three or more reagent mixtures require complicated microchannel structures and operating procedures when using traditional microfluidic network-based gradient generators. Therefore, an on-demand geometric metering-based mixture generator which facilitates robust, scalable, and accurate multi-reagent mixing in a high-throughput fashion has been developed and incorporated with a live cell array as a microfluidic screening platform for conducting combination drug or toxin assays. Integrated single cell trapping array allowed single cell resolution analysis of drugs and toxin effects. Reagent mixture generation and precise application of the mixtures to arrays of cell culture chambers repeatedly over time were successfully demonstrated, showing significantly improved repeatability and accuracy than those from conventional microfluidic network-based gradient generators. The influence of this improved repeatability and accuracy in generating concentration specified mixtures on obtaining more reliable and repeatable biological data sets were studied.
7

The dynamics of the MRP1/2 complex and the function of intact MRB1 core for RNA editing in \kur{Trypanosoma brucei}

HUANG, Zhenqiu January 2015 (has links)
This thesis describes the dynamics of mitochondrial RNA-binding protein 1 and 2 (MRP1/2) complex in different cell lines of Trypanosoma brucei under an optimized immobilized condition. This study reveals the influence of RNA on the complex's dynamics. Furthermore, the function of RNA-binding complex 1 (MRB1) core has been studied via reverse genetic, biochemical and molecular techniques, with its role in RNA editing being proposed.
8

Live cell imaging technology development for cancer research

Kosmacek, Elizabeth Anne 01 December 2009 (has links)
Live cell imaging is a unique tool for cellular research with a wide variety of applications. By streaming digital microscopic images an investigator can observe the dynamic morphology of a cell, track cell movement on a surface, and measure quantities or localization patterns of fluorescently labeled proteins or molecules. Digital image sequences contain a vast amount of information in the form of visually detectable morphological changes in the cell. We designed computer programs that allow the manual identification of visible events in live cell digital image sequences [Davis et al. 2007]. Once identified, the data are analyzed using algorithms to calculate the yield of individual events per cell over the time course of image acquisition. The sequence of event data is also constructed into directed acyclic graphs and through the use of a subgraph isomorphism algorithm we are able to detect specified patterns of events originating from a single cell. Two projects in the field of cancer research are here discussed that describe and validate the application of the event analysis programs. In the first project, mitotic catastrophe (MC) research [Ianzini and Mackey, 1997; Ianzini and Mackey, 1998; reviewed by Ianzini and Mackey, 2007] is enhanced with the addition of live cell imaging to traditional laboratory experiments. The event analysis program is used to describe the yield of normal or abnormal divisions, fusions, and cell death, and to detect patterns of reductive division and depolyploidization in cells undergoing radiation-induced MC. Additionally, the biochemical and molecular data used in conjunction with live cell imaging data are presented to illustrate the usefulness of combining biology and engineering techniques to elucidate pathways involved in cell survival under different detrimental cell conditions. The results show that the timing of depolyploidization in MC cells correlates with increased multipolar divisions, up-regulation of meiosis-specific genes, and the production of mononucleated cell progeny. It was confirmed that mononucleated cells are produced from multipolar divisions and these cells are capable of resuming normal divisions [Ianzini et al., 2009]. The implications for the induction of meiosis as a mechanism of survival after radiation treatment are discussed. In the second project, the effects of long-term fluorescence excitation light exposure are examined through measurements of cell division and cell death. In the field of live cell imaging, probably the most modern and most widely utilized technique is fluorescence detection for intracellular organelles, proteins, and molecules. While the technologies required to label and detect fluorescent molecules in a cell are well developed, they are not idealized for long term measurements as both the probes and excitation light are toxic to the cells [Wang and Nixon, 1978; Bradley and Sharkey, 1977]. From the event analysis data it was determined that fluorescence excitation light is toxic to multiple cell lines observed as the reduction of normal cell division, induction of cell death, and apparent morphological aberrations.
9

La visualisation de la transcription en molécules unique révèle de nouvelles caractéristiques des promoteurs cellulaires et viraux / Real time imaging of transcription reveals new features of cellular and viral promoters

Kozulic-Pirher, Alja 22 November 2018 (has links)
La transcription est une étape fondamentale dans l'expression des gènes. Cependant, elle reste incomplètement caractérisée dans les cellules vivantes. Pour mieux comprendre la dynamique de la transcription, notre laboratoire a amélioré le système de marquage d'ARN en utilisant la séquence codante pour MS2, facilement fusionnée avec le promoteur d'intérêt et inséré copie unique dans deux lignées cellulaires HeLa cellules. Cette construction permet une vue quantitative de la transcription, a l’échelle de la molécule unique, en temps réel. Nous avons trouvé que le VIH-1 est transcrit par des groupes de polymérases nominés convois. La transcription oscille de manière aléatoire avec des périodes actives (ON) et inactives (OFF) et est contrôlée indépendamment.Sur la base de cette découverte, nous avons étudié: (i) comment l'architecture de différents promoteurs de mammifères contrôle la cinétique transcriptionnelle; et (ii) le rôle du transactivateur transcriptionnel (Tat), le régulateur principal de la transcription du VIH-1, dans les cellules vivantes. Pour traiter ces questions, une nouvelle méthode de modélisation a été établi, combinant l'information des fluctuations transcriptionnelles avec différentes résolutions temporelles. Cela a donné une vue complète et précise du processus stochastique, décrit par le modèle de Markov. Cinq des six promoteurs de mammifères pourraient être définis par trois états, probablement contrôlés par des mécanismes différents. Le passage entre ces états est défini par les constantes de vitesse et l'écart entre eux pourrait potentiellement expliquer la différence dans la quantité d'ARN produit. De manière intéressante, nous avons constaté que les taux de passage entre les états inactifs et profondément silencieux sont la marque distinctive de différents promoteurs, suggérant que les événements cruciaux définissant les profils transcriptionnels sont en fait des événements pré-transcriptionnels.Pour étudier le rôle de Tat, des lignées cellulaires contenant un rapporteur du VIH-1 et une quantité différente de Tat ont été produites. Avec cette approche décrite ci-dessus, nous avons montré que Tat, précédemment caractérisé en tant qu'acteur dominant dans la libération de la polymérase en pause, agit longtemps avant que la transcription soit initiée. Ces résultats frappants apportent de nouvelles perspectives concernant la dynamique transcriptionnelle du VIH-1 contrôlée par Tat. / Transcription is a fundamental step in gene expression. However, it is incompletely characterized in single living cells. To address this question, our laboratory developed the improved RNA tagging system using MS2-binding protein that could easily be fused with the promoter of interest inserted in a single copy in HeLa cell lines. This construct allows quantitative, single molecule view of the transcription in a real time. We have found that HIV-1 is transcribed by groups of closely spaced polymerases referred as convoys. The transcription oscillates randomly between active (ON) and inactive (OFF) periods that are controlled independently.On the basis of this discovery, we further investigated: (i) how architecture of different mammalian promoters controls the transcriptional kinetics; and (ii) the role of transcriptional transactivator (Tat), the master regulator of in HIV-1 transcription in living cells. To address this, new pipeline for the quantification was established, combining the information of transcriptional fluctuations with different temporal resolutions. This gave the full and precise view of the stochastic switching, described by the Markov model. Five of six mammalian promoters could be defined by three states, probably controlled by different mechanisms. Switching between them is defined by the rate constants and the discrepancy among them could potentially explain the difference in the amount mRNA produced. Interestingly, we found that switching rates between inactive, deeply silent states are the hallmark of different promoters, suggesting that the crucial events defining the transcriptional profiles are in fact pre-transcriptional events.To address the role of Tat, cell lines containing HIV-1 reporter and different amounts of Tat were produced. With the above described approach, we found that Tat, previously characterized as dominant player in the release of the paused polymerase, actually acts long before the transcription is initiated. These striking results bring new insights of HIV-1 transcriptional dynamics controlled by Tat.
10

isoSTED microscopy for live cell imaging

Siegmund, René 22 February 2019 (has links)
No description available.

Page generated in 0.054 seconds