• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the methane producing pathway in lab-scale biogas reactors subjected to sequential increase of ammonium and daily acetate-pulsing

Moberg, Sofia January 2020 (has links)
Syntrophic acetate oxidizing bacteria convert acetate into hydrogen and carbon dioxide and through the mutualistic syntrophic partnership with methanogens the products are further converted to methane in biogas processes operating at high ammonia concentrations. There is very little known about SAOBs, only five have been characterized and had their genome analyzed. The aim of this project was to gain further knowledge about the methane producing pathway of SAOBs with a proteomic approach. Proteins were extracted from biogas sludge with a phenol-based approach and trypsin digestion and peptide recovery were performed using the Suspension Trapping method. Measurement of the peptide content was made with LC-MS/MS. The peptide profiles obtained were screened for the proteins expressed of the mesophilic SAOB Syntrophaceticus schinkii. The data supports earlier suggestions that it utilizes the Wood-Ljungdahl pathway for hydrogen production. Furthermore, the peptide profile revealed that enzymes for the glycine reductase complex and the glycine cleavage system were expressed during high ammonia concentration, indicating a potential role of these enzymes in the methane producing pathway. However, due to partial failure of the sample preparation for mass spectrometry measurements no quantification conclusions could be made. A discussion on how to further improve sample preparation methods as well as how to access the proteome to a large extent is presented.
2

Thermodynamic, Sulfide, Redox Potential, and pH Effects on Syngas Fermentation

Hu, Peng 16 February 2011 (has links) (PDF)
Recently, work in ethanol production is exploring the fermentation of syngas (primarily CO, CO2, and H2) following gasification of cellulosic biomass. The syngas fermentation by clostridium microbes utilizes the Wood-Ljungdahl metabolic pathway. Along this pathway, the intermediate Acetyl-CoA typically diverges to produce ethanol, acetic acid, and/or cell mass. To develop strategies for process optimization, a thermodynamic analysis was conducted that provided a detailed understanding of the favorability of the reactions along the metabolic pathway. Thermodynamic analysis provided identification of potentially limiting steps. Once these limiting reactions were identified, further thermodynamic analysis provided additional insights into the ways in which reaction conditions could be adjusted to improve product yield as well as minimize the effect of such bottlenecks. In this way, strategies to enhance product formation were effectively formed. A thermodynamic analysis regarding electron utilization suggested that it would be unlikely that H2 is utilized in favor of CO for electron production when both species are present. Therefore, CO conversion efficiency to products will be sacrificed during syngas fermentation since some of the CO will make electrons at the expense of product and cell mass formation. Furthermore, the analysis showed the thermodynamic difference of ethanol production, acetate production, and acetate to ethanol conversion, at varying reaction conditions, such as at different pH and redox potential levels. These differences were then incorporated into a strategy to optimize production of desired product, improve bioreactor design, and decrease the amount of by-product formed. Based on the thermodynamics analysis, experiments with varying experimental conditions were performed. The results showed that sulfide concentration in the media changed. In order to assess the effects of experimental conditions on syngas fermentation and decrease the experimental variability, experiments with controlled sulfide, redox potential, and pH were designed and the results indicated that these factors play key roles on cell growth, product formation and product distribution. Furthermore, experimental conditions had different effects on fermentation during different phases. For example, cell growth is much better at pH=5.8 than pH=4.5. However, the ethanol production rate at pH=4.5 is better than pH=5.8. A strategy involving controlling the pH and redox potential at different phases was effectively applied to improve ethanol production. This work provided significant insights on how varying experimental conditions can affect the syngas fermentation process.
3

Enhancement of Mass Transfer and Electron Usage for Syngas Fermentation

Orgill, James J. 19 April 2014 (has links) (PDF)
Biofuel production via fermentation is produced primarily by fermentation of simple sugars. Besides the sugar fermentation route, there exists a promising alternative process that uses syngas (CO, H2, CO2) produced from biomass as building blocks for biofuels. Although syngas fermentation has many benefits, there are several challenges that still need to be addressed in order for syngas fermentation to become a viable process for producing biofuels on a large scale. One challenge is mass transfer limitations due to low solubilities of syngas species. The hollow fiber reactor (HFR) is one type of reactor that has the potential for achieving high mass transfer rates for biofuels production. However, a better understanding of mass transfer limitations in HFRs is still needed. In addition there have been relatively few studies performing actual fermentations in an HFR to assess whether high mass transfer rates equate to better fermentation results. Besides mass transfer, one other difficulty with syngas fermentation is understanding the role that CO and H2 play as electron donors and how different CO and H2 ratios effect syngas fermentation. In addition to electrons from CO and H2, electrodes can also be used to augment the supply of electrons or provide the only source of electrons for syngas fermentation. This work performed an in depth reactor comparison that compared mass transfer rates and fermentation abilities. The HFR achieved the highest oxygen mass transfer coefficient (1062 h-1) compared to other reactors. In fermentations, the HFR showed very high production rates (5.3 mMc/hr) and ethanol to acetic acid ratios (13) compared to other common reactors. This work also analyzed the use of electrons from H2 and CO by C. ragsdalei and to study the effects of these two different electron sources on product formation and cell growth. This study showed that cell growth is not largely effected by CO composition although there must be at least some minimum amount of CO present (between 5-20%). Interestingly, H2 composition has no effect on cell growth. Also, more electron equivalents will lead to higher product formation rates. Following Acetyl-CoA formation, H2 is only used for product formation but not cell growth. In addition to these studies on electrons from H2 and CO, this work also assessed the redox states of methyl viologen (MV) for use as an artificial electron carrier in applications such as syngas fermentation. A validated thermodynamic model was presented in order to illustrate the most likely redox state of MV depending on the system setup. Variable MV extinction coefficients and standard redox potentials reported in literature were assessed to provide recommended values for modeling and analysis. Model results showed that there are narrow potential ranges in which MV can change from one redox state to another, thus affecting the potential use as an artificial electron carrier.

Page generated in 0.0514 seconds