• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 19
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 63
  • 19
  • 18
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Zpětný překlad vysokoúrovňových konstrukcí jazyka C++ / Decompilation of High-Level Constructions in C++ Binaries

Jakub, Dušan January 2015 (has links)
The thesis addresses the decompilation of high-level object-oriented C++ language from a machine code. The term reverse engineering is defined and existing decompilers are described with emphasis on their ability to reconstruct C++. AVG decompiler project is introduced, to which this thesis contributes. C++ language is analysed, both on a logical level and in the machine code and existing methods of decompilation are described. On this basis a novel method is introduced, capable of decompiling classes, their hierarchy, constructors, destructors and definitions and usages of virtual methods. The method is implemented, tested and evaluated. In the conclusion, several suggestions for future development of this project are presented.
62

TAMING IRREGULAR CONTROL-FLOW WITH TARGETED COMPILER TRANSFORMATIONS

Charitha Saumya Gusthinna Waduge (15460634) 15 May 2023 (has links)
<p>    </p> <p>Irregular control-flow structures like deeply nested conditional branches are common in real-world software applications. Improving the performance and efficiency of such programs is often challenging because it is difficult to analyze and optimize programs with irregular control flow. We observe that real-world programs contain similar or identical computations within different code paths of the conditional branches. Compilers can merge similar code to improve performance or code size. However, existing compiler optimizations like code hoisting/sinking, and tail merging do not fully exploit this opportunity. We propose a new technique called Control-Flow Melding (CFM) that can merge similar code sequences at the control-flow region level. We evaluate CFM in two applications. First, we show that CFM reduces the control divergence in GPU programs and improves the performance. Second, we apply CFM to CPU programs and show its effectiveness in reducing code size without sacrificing performance. In the next part of this dissertation, we investigate how CFM can be extended to improve dynamic test generation techniques like Dynamic Symbolic Execution (DSE). DSE suffers from path explosion problem when many conditional branches are present in the program. We propose a non-semantics-preserving branch elimination transformation called CFM-SE that reduces the number of symbolic branches in a program. We also provide a framework for detecting and reasoning about false positive bugs that might be added to the program by non-semantics-preserving transformations like CFM-SE. Furthermore, we evaluate CFM-SE on real-world applications and show its effectiveness in improving DSE performance and code coverage. </p>
63

Adapting the polytope model for dynamic and speculative parallelization

Jimborean, Alexandra 14 September 2012 (has links) (PDF)
In this thesis, we present a Thread-Level Speculation (TLS) framework whose main feature is to speculatively parallelize a sequential loop nest in various ways, to maximize performance. We perform code transformations by applying the polyhedral model that we adapted for speculative and runtime code parallelization. For this purpose, we designed a parallel code pattern which is patched by our runtime system according to the profiling information collected on some execution samples. We show on several benchmarks that our framework yields good performance on codes which could not be handled efficiently by previously proposed TLS systems.

Page generated in 0.0294 seconds