• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electric Residential Load Growth in Kabul City-Afghanistan for Sustainable Situation

Sharifi, Mohammad Shafi January 2009 (has links)
No description available.
2

Control Applications and Economic Evaluations of Distributed Series Reactors in Unbalanced Electrical Transmission Systems

Omran, Shaimaa AbdAlla Ezz Ibrahim 07 May 2015 (has links)
An important issue in today's power system is the need to analyse and determine the adequacy of transmission capacity. There is a need for approaches to increase transmission system capacity without construction of new transmission facilities, all while assuring secure operation of the grid. New technologies can enhance efficiency and reliability, increase capacity utilization, enable more rapid response to contingencies, and increase flexibility in controlling power flows on transmission lines. Distributed Series Reactor (DSR) control is a new smart grid technology that can be applied to control flows in the transmission system. DSRs can be used to balance phase flows in a single line as well as to control the distribution of flow in parallel flow paths. This dissertation investigates the Design of Distributed Series Reactors (DSRs) on transmission lines and provide guidelines and considerations for their implementation in bulk power system transmission networks to control power flow to: increase the exisiting transmission capacity utilization, alleviate overloads due to load growth and contingencies, and mitigate the effects of unbalanced voltages, unbalanced transmission line impedances and unbalanced loads by balancing flows in the phases of an unbalanced line. This dissertation provides several DSR System Design aspects; for a single line by performing an experiment for EHV and high voltage three parallel transmission lines, and for lines within the boundaries of a power system by deployment of DSRs over the IEEE 39 bus system that is modified and modelled as a 3-phase unbalanced transmission model with 345 kV lines that accounts for tower geometry and as a balanced, 3-phase model that is derived from the unbalanced, 3-phase model, and finally for lines within a control area and a set of tie lines among control areas by deployment of DSRs over a real system control area and the tie lines connecting this area to other power pool areas. For all experiments and simulations in this dissertation lines are modelled as 3-phase lines. The DSR system design for Unbalanced vs. Balanced 3-phase systems (Unbalanced immittance, Unbalanced load) are examined. Also the Distributed vs. Lumped models for 3-phase systems are tested. Comparison between DSR system design and transposition for voltage balancing was performed. The effect of bundling the conductors for DSR system design was investiagted. In this dissertation an economic evaluation of DSR System Design for parallel lines and for the IEEE 39 bus three-phase unbalanced line model for N-1 criterion contingency with load growth is performed. The economic evaluation performed for the DSR system design of a power system versus new transmission line construction showed that DSRs can be cost effective in managing load increases from year to a year, and thus avoid larger investments in new line construction until load expectations are proven to be true. Thus, a major value of DSRs is handling load growth in the short term, delaying larger investments. Although many aspects of DSR control implementation have yet to be explored, this work has demonstrated the fundamental concept is sound and the economics are compelling. / Ph. D.
3

Control of Power Flow in Transmission Lines using Distributed Series Reactors

Nazir, Mohammad Nawaf 19 June 2015 (has links)
Distributed Series Reactors (DSRs) can be used to control power flow to more fully utilize the capacity of a transmission network, delaying investment in new transmission lines. In this study the IEEE 39 bus standard test system is modified to a 3-phase, unbalanced model consisting of 230 kV, 345 kV and 500 kV lines, where lines of different voltage run in parallel. This model is used to study load growth and the effect of adding DSRs to alleviate resulting overloads, and in particular to alleviate overloads on lines of different voltage running in parallel. The economic benefit of adding DSRs to the network is compared to the addition of new transmission lines in the network. In the second part of the work, the effect of unsymmetrical operation of DSRs on a single transmission line is studied and compared to the symmetrical operation of DSRs. It is found that the unsymmetrical operation of DSRs is more economical. Finally the unsymmetrical operation of DSRs to reduce voltage imbalance in the network is considered. / Master of Science

Page generated in 0.0398 seconds