• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fast demand response with datacenter loads: a green dimension of big data

McClurg, Josiah 01 August 2017 (has links)
Demand response is one of the critical technologies necessary for allowing large-scale penetration of intermittent renewable energy sources in the electric grid. Data centers are especially attractive candidates for providing flexible, real-time demand response services to the grid because they are capable of fast power ramp-rates, large dynamic range, and finely-controllable power consumption. This thesis makes a contribution toward implementing load shaping with server clusters through a detailed experimental investigation of three broadly-applicable datacenter workload scenarios. We experimentally demonstrate the eminent feasibility of datacenter demand response with a distributed video transcoding application and a simple distributed power controller. We also show that while some software power capping interfaces performed better than others, all the interfaces we investigated had the high dynamic range and low power variance required to achieve high quality power tracking. Our next investigation presents an empirical performance evaluation of algorithms that replace arithmetic operations with low-level bit operations for power-aware Big Data processing. Specifically, we compare two different data structures in terms of execution time and power efficiency: (a) a baseline design using arrays, and (b) a design using bit-slice indexing (BSI) and distributed BSI arithmetic. Across three different datasets and three popular queries, we show that the bit-slicing queries consistently outperform the array algorithm in both power efficiency and execution time. In the context of datacenter power shaping, this performance optimization enables additional power flexibility -- achieving the same or greater performance than the baseline approach, even under power constraints. The investigation of read-optimized index queries leads up to an experimental investigation of the tradeoffs among power constraint, query freshness, and update aggregation size in a dynamic big data environment. We compare several update strategies, presenting a bitmap update optimization that allows improved performance over both a baseline approach and an existing state-of-the-art update strategy. Performing this investigation in the context of load shaping, we show that read-only range queries can be served without performance impact under power cap, and index updates can be tuned to provide a flexible base load. This thesis concludes with a brief discussion of control implementation and summary of our findings.
2

Electrical Energy Retail Price Optimization for an Interconnected/Islanded Power Grid

Saeidpour Parizy, Ehsan January 2017 (has links)
No description available.
3

Demand Response in Smart Grid

Zhou, Kan 16 April 2015 (has links)
Conventionally, to support varying power demand, the utility company must prepare to supply more electricity than actually needed, which causes inefficiency and waste. With the increasing penetration of renewable energy which is intermittent and stochastic, how to balance the power generation and demand becomes even more challenging. Demand response, which reschedules part of the elastic load in users' side, is a promising technology to increase power generation efficiency and reduce costs. However, how to coordinate all the distributed heterogeneous elastic loads efficiently is a major challenge and sparks numerous research efforts. In this thesis, we investigate different methods to provide demand response and improve power grid efficiency. First, we consider how to schedule the charging process of all the Plugged-in Hybrid Electrical Vehicles (PHEVs) so that demand peaks caused by PHEV charging are flattened. Existing solutions are either centralized which may not be scalable, or decentralized based on real-time pricing (RTP) which may not be applicable immediately for many markets. Our proposed PHEV charging approach does not need complicated, centralized control and can be executed online in a distributed manner. In addition, we extend our approach and apply it to the distribution grid to solve the bus congestion and voltage drop problems by controlling the access probability of PHEVs. One of the advantages of our algorithm is that it does not need accurate predictions on base load and future users' behaviors. Furthermore, it is deployable even when the grid size is large. Different from PHEVs, whose future arrivals are hard to predict, there is another category of elastic load, such as Heating Ventilation and Air-Conditioning (HVAC) systems, whose future status can be predicted based on the current status and control actions. How to minimize the power generation cost using this kind of elastic load is also an interesting topic to the power companies. Existing work usually used HVAC to do the load following or load shaping based on given control signals or objectives. However, optimal external control signals may not always be available. Without such control signals, how to make a tradeoff between the fluctuation of non-renewable power generation and the limited demand response potential of the elastic load, and to guarantee user comfort level, is still an open problem. To solve this problem, we first model the temperature evolution process of a room and propose an approach to estimate the key parameters of the model. Then, based on the model predictive control, a centralized and a distributed algorithm are proposed to minimize the fluctuation and maximize the user comfort level. In addition, we propose a dynamic water level adjustment algorithm to make the demand response always available in two directions. Extensive simulations based on practical data sets show that the proposed algorithms can effectively reduce the load fluctuation. Both randomized PHEV charging and HVAC control algorithms discussed above belong to direct or centralized load shaping, which has been heavily investigated. However, it is usually not clear how the users are compensated by providing load shaping services. In the last part of this thesis, we investigate indirect load shaping in a distributed manner. On one hand, we aim to reduce the users' energy cost by investigating how to fully utilize the battery pack and the water tank for the Combined Heat and Power (CHP) systems. We first formulate the queueing models for the CHP systems, and then propose an algorithm based on the Lyapunov optimization technique which does not need any statistical information about the system dynamics. The optimal control actions can be obtained by solving a non-convex optimization problem. We then discuss when it can be converted into a convex optimization problem. On the other hand, based on the users' reaction model, we propose an algorithm, with a time complexity of O(log n), to determine the RTP for the power company to effectively coordinate all the CHP systems and provide distributed load shaping services. / Graduate

Page generated in 0.0805 seconds