1 |
Fault simulator for proportional solenoid valvesBhojkar, Amit Arvind 09 August 2004 (has links)
Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.<p>Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved. The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. <p>The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability. Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.
Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved.The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system.
The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability.
|
2 |
Fault simulator for proportional solenoid valvesBhojkar, Amit Arvind 09 August 2004
Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.<p>Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved. The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. <p>The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability. Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.
Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved.The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system.
The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability.
|
3 |
Equipment and Protocols for Quasi-Static and Dynamic Tests of High-Strength High-Ductility Concrete (HSHDC) and Very-High-Strength Concrete (VHSC))Williams, Brett Anthony 11 December 2015 (has links)
This research developed the quasi-static and dynamic equipment and protocols for tests of both Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) to predict blast performance. VHSC was developed for high compressive strength (> 200 MPa). Using VHSC as the baseline material, HSHDC was developed and exhibits comparable compressive strength (> 150 MPa) and high tensile ductility (> 3% tensile strain). This research investigated quasi-static material properties including compression, tension, and flexure (third-point and pressure loadings). Additionally, dynamic blast load simulator (shock tube) tests were performed on simply-supported one-way panels in flexure. Subsequently, the material response in flexure was predicted using the Wall Analysis Code (WAC). Although VHSC has a higher peak flexural strength capacity, HSHDC exhibits higher ductility through multiple parallel micro-cracks transverse to loading. The equipment and test protocols proved to be successful in providing ways to test scaled concrete specimens quasi-statically and dynamically.
|
4 |
RESIDENTIAL ELECTRICITY CONSUMPTION ANALYSIS: A CROSSDOMAIN APPROACH TO EVALUATE THE IMPACT OF COVID-19 IN A RESIDENTIAL AREA IN INDIANAManuel Eduardo Mar Valencia (11256321) 10 August 2021 (has links)
The pandemic scenario caused by COVID-19 is an event with no precedent. Therefore, it<br>is a phenomenon that can be studied to observe how electricity loads have changed during the stayat-home order weeks. The data collection process was done through online surveys and using<br>publicly available data. This study is focusing on analyzing household energy units such as<br>appliances, HVAC, lighting systems. However, collecting this data is expensive and timeconsuming since dwellings would have to be studied individually. As a solution, previous studies<br>have shown success in characterizing residential electricity using surveys with stochastic models.<br>This characterized electricity consumption data allows the researchers to generate a predictive<br>model, make a regression and understand the data. In that way, the data collection process will not<br>be as costly as installing measuring instruments or smart meters. The input data will be the<br>behavioral characteristics of each participant; meanwhile, the output of the analysis will be the<br>estimated electricity consumption "kWh." After generating the "kWh" target, a sensitivity analysis<br>will be done to observe the electricity consumption through time and examine how people evolved<br>their load during and after the stay-at-home order.<br>This research can help understand the change in electricity consumption of people who<br>worked at home during the pandemic and generate energy indicators and costs such as home office<br>electricity cost kWh/year. In addition to utilities and energy, managers can benefit from having a<br>clear understanding of domestic consumers during emergency scenarios as pandemics.
<br>
|
Page generated in 0.081 seconds