• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical analysis and simulation methods related to load-sharing models.

Rydén, Patrik January 2000 (has links)
We consider the problem of estimating the reliability of bundles constructed of several fibres, given a particular kind of censored data. The bundles consist of several fibres which have their own independent identically dis-tributed failure stresses (i.e.the forces that destroy the fibres). The force applied to a bundle is distributed between the fibres in the bundle, accord-ing to a load-sharing model. A bundle with these properties is an example of a load-sharing system. Ropes constructed of twisted threads, compos-ite materials constructed of parallel carbon fibres, and suspension cables constructed of steel wires are all examples of load-sharing systems. In par-ticular, we consider bundles where load-sharing is described by either the Equal load-sharing model or the more general Local load-sharing model. In order to estimate the cumulative distribution function of failure stresses of bundles, we need some observed data. This data is obtained either by testing bundles or by testing individual fibres. In this thesis, we develop several theoretical testing methods for both fibres and bundles, and related methods of statistical inference. Non-parametric and parametric estimators of the cumulative distribu-tion functions of failure stresses of fibres and bundles are obtained from different kinds of observed data. It is proved that most of these estimators are consistent, and that some are strongly consistent estimators. We show that resampling, in this case random sampling with replacement from sta-tistically independent portions of data, can be used to assess the accuracy of these estimators. Several numerical examples illustrate the behavior of the obtained estimators. These examples suggest that the obtained estimators usually perform well when the number of observations is moderate.
2

Estimation of the reliability of systems described by the Daniels Load-Sharing Model

Rydén, Patrik January 1999 (has links)
We consider the problem of estimating the failure stresses of bundles (i.e. the tensile forces that destroy the bundles), constructed of several statisti-cally similar fibres, given a particular kind of censored data. Each bundle consists of several fibres which have their own independent identically dis-tributed failure stresses, and where the force applied on a bundle at any moment is distributed equally between the unbroken fibres in the bundle. A bundle with these properties is an example of an equal load-sharing sys-tem, often referred to as the Daniels failure model. The testing of several bundles generates a special kind of censored data, which is complexly struc-tured. Strongly consistent non-parametric estimators of the distribution laws of bundles are obtained by applying the theory of martingales, and by using the observed data. It is proved that random sampling, with replace-ment from the statistical data related to each tested bundle, can be used to obtain asymptotically correct estimators for the distribution functions of deviations of non-parametric estimators from true values. In the case when the failure stresses of the fibres are described by a Weibull distribution, we obtain strongly consistent parametric maximum likelihood estimators of the distribution functions of failure stresses of bundles, by using the complexly structured data. Numerical examples illustrate the behavior of the obtained estimators.

Page generated in 0.0599 seconds