• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hand-Movement Prediction Using LFP Data

Muralidharan, Prasanna 03 1900 (has links) (PDF)
The last decade has seen a surge in the development of Brain-Machine Interfaces (BMI) as assistive neural devices for paralysis patients. Current BMI research typically involves a subject performing movements by controlling a robotic prosthesis. The neural signal that we consider for analysis is the Local Field Potential (LFP). The LFP is a low frequency neural signal recorded from intra-cortical electrodes, and has been recognized as one containing movement information. This thesis investigates hand-movement prediction using LFP data as input. In Chapter 1, we give an overview of Brain Machine Interfaces. In Chapter 2, we review the necessary concepts in time series analysis and pattern recognition. In the final chapter, we discuss classification accuracies when considering Summed power and Coherence as feature vectors.
2

Analysis of Local Field Potential and Gamma Rhythm Using Matching Pursuit Algorithm

Chandran, Subash K S January 2016 (has links) (PDF)
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. These signals also have transient structures related to spiking or sudden onset of a stimulus, which have a duration not exceeding tens of milliseconds. Further, brain signals are highly non-stationary because both behavioral state and external stimuli can change over a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal. In Chapter 2, we describe a multi-scale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both sharp stimulus-onset transient and sustained gamma rhythm in local field potential recorded from the primary visual cortex. Gamma rhythm (30 to 80 Hz), often associated with high-level cortical functions, has been proposed to provide a temporal reference frame (“clock”) for spiking activity, for which it should have least center frequency variation and consistent phase for extended durations. However, recent studies have proposed that gamma occurs in short bursts and it cannot act as a reference. In Chapter 3, we propose another gamma duration estimator based on matching pursuit (MP) algorithm, which is tested with synthetic brain signals and found to be estimating the gamma duration efficiently. Applying this algorithm to real data from awake monkeys, we show that the median gamma duration is more than 330 ms, which could be long enough to support some cortical computations.

Page generated in 0.0743 seconds