• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Separation of variables and new quantum integrable systems with boundaries / Séparation des variables et nouveaux systèmes intégrables quantiques avec bords

Pezelier, Baptiste 01 June 2018 (has links)
Les principaux outils pour la compréhension du comportement macroscopique desystèmes quantiques à partir de leur description microscopique sont la déterminationdu spectre du Hamiltonien associé et le calcul des fonctions de corrélation. Cettethèse se place dans le cadre du développement d’un tel programme de recherche afind’étudier des systèmes intégrables quantiques avec des conditions aux bordsintégrables générales, le but à long terme étant la description exacte d’une physiquequantique hors équilibre.Plus spécifiquement, nous avons analysé la classe des systèmes intégrablesquantiques sur réseau associés aux représentations cycliques de l’algèbre de réflexionà 6-vertex, avec comme exemples les modèles de sine Gordon et de Potts chiral avecconditions aux bords intégrables.Une large partie du travail a été consacrée au développement de la méthode deséparation quantique des variables pour résoudre le problème spectral de la matricede transfert de ces modèles avec conditions de bords intégrables les plus générales,en étendant l’idée des transformations de jauge de Baxter à ces algèbres de réflexion.Nous avons caractérisé complètement le spectre de la matrice de transfert (valeurspropres et vecteurs propres) en termes des solutions d’un système discret d’équationspolynomiales et d’une façon équivalente en termes des solutions, dans une certaineclasse de fonctions, d’une équation de type Baxter fonctionnelle. Cela permet de fairele lien dans certains cas particuliers avec la méthode de l’anstaz de Bethe algébriquequi ne permet pas d’étudier ces modèles en toute généralité.Nous avons ensuite construit des familles de nouveaux Hamiltoniens locaux avecconditions aux bords intégrables qui commutent avec la matrice de transfert. Pour cefaire nous avons défini une hiérarchie de nouvelles équations de réflexion mélangeantdifférentes représentations de l’algèbre quantique à 6-vertex et utilisant entre autres,la matrice R fondamentale cyclique. / The main theoretical tools to understand the macroscopic behaviour of quantumsystems from their microscopic description are the determination of theirHamiltonian spectrum and the computation of their correlation functions. This thesistakes place in the development of such a research program to study quantumintegrable models with general integrable boundary conditions, the long-range goalbeing to be able to exactly describe out of equilibrium physics.More specifically, we have analysed the class of integrable quantum models on thelattice associated to cyclic representations of the 6-vertex reflection algebra,including as particular cases the lattice sine- Gordon model at root of unity and thechiral Potts model with general integrable boundaries.A large part of the work has been devoted to the development of the quantumseparation of variables method to solve the spectral problem for these models withgeneral integrable boundary conditions, by generalising the Baxter’s gaugetransformations to these cyclic reflection algebras.We have completely characterised the transfer matrix spectrum (both eigenvaluesand eigenstates) in terms of the set of solutions to a discrete system of polynomialequations and equivalently as the set of solutions, in a given class of functions, to aBaxter like functional equation. This last point allows in particular cases to make alink with the Algebraic Bethe Ansatz approach, which in general, cannot be used forthe study of these models.We have then constructed families of new local Hamiltonians with integrableboundaries commuting with the above transfer matrix. To that end, we have defined ahierarchy of new mixed reflection equations, involving different representations ofthe 6-vertex algebra and using, among others, the fundamental R-matrix.

Page generated in 0.0517 seconds