1 |
Some applications of local influence diagnostics.Yick, John S. January 2000 (has links)
The influence of observations on the outcome of an analysis is of importance in statistical data analysis. A practical and well-established approach to influence analysis is case deletion. However, it has its draw-backs when subsets of observations are jointly influential and offset each other's influence. Another approach is local influence proposed by Cook (1986).The local influence methodology of Cook (1986) is based on the curvature of the likelihood displacement surface formed by model/data perturbations. Wu and Luo (1993a, 1993b) further developed the idea and proposed the study of the perturbation-formed surface of a variable by evaluating the curvature of the surface in addition to its maximum slope. This thesis utilizes the local influence approach to develop influence diagnostic methods for four different topics.Firstly, we proposed a stepwise confirmatory procedure for the detection of multiple outliers in two-way contingency tables. The procedure begins with the identification of a reliable set of candidate outliers by evaluating the derivatives of the perturbation-formed surface of the Pearson goodness-of-fit statistic. An adding-back iterative algorithm is then applied to the candidate set to assess their relative discordancy. Using two real data sets, the proposed procedure is shown to be less susceptible to both masking and swamping problems than residual based measures. In a Monte Carlo study, the local influence diagnostics are also found to outperform standard residual-based methods in terms of efficiency and other criteria.Transformations of covariates are commonly applied in regression analysis. When a parametric transformation family is used, the maximum likelihood estimate of the transformation parameter is often sensitive to minor perturbations of the data. Diagnostics based on the local influence approach are derived to assess the influence ++ / of observations on the covariate transformation parameter in generalized linear models. Three numerical examples are presented to illustrate the usefulness of the proposed diagnostics. The need for transformation is also addressed in addition to assessing influence on the transformation parameter.A common method of choosing the link function in generalized linear models is to specify a parametric link family indexed by unknown parameters. The maximum likelihood estimates of such link parameters, however, often depend on one or several extreme observations. Diagnostics based on the local influence approach are derived to assess the sensitivity of the parametric link analysis. Two examples demonstrate that the proposed diagnostics can identify jointly influential observations on the link even when masking is present. The application of the diagnostics can also assist us in revising the link parameter and hence the form of the model.The portmanteau statistic is commonly used for testing goodness-of-fit of time series models. However, this lack of fit test may depend on one or several atypical observations in the series. We investigate the sensitivity of the portmanteau statistic in the presence of additive outliers. Diagnostics based on the local influence approach are developed to assess both local and global influence. Three practical examples demonstrate the usefulness of the proposed diagnostics.
|
2 |
\"Regressão beta\" / Beta regressionOspina, Patricia Leone Espinheira 29 March 2007 (has links)
Muitos estudos em diferentes áreas examinam como um conjunto de variáveis influencia algum tipo de percentagem, proporção ou frações. Modelos de regressão lineares não são satisfatórios para modelar tais dados. Uma classe de modelos de regressão beta que em muitos aspectos é semelhante aos modelos lineares generalizados foi proposto por Ferrari e Cribari--Neto~(2004). A resposta média é relacionada com um predictor linear por uma função de ligação e o predictor linear envolve covariáveis e parâmetros de regressão desconhecidos. O modelo também é indexado por um parâmetro de precisão. Smithson e Verkuilen,(2005), entre outros, consideram o modelo de regressão beta em que esse parâmetro varia ao longo das observações. Nesta tese foram desenvolvidas técnicas de diagnóstico para os modelos regressão beta com dispersão constante e com dispersão variável, sendo que o método e influência local (Cook,~1986) mostrou-se decisivo, inclusive no sentido de identificar dispersão variável nos dados. Adicionalmente, avaliamos através de estudos de simulação o desempenho de estimadores de máxima verossimilhança para o modelo de regressão beta com dispersão variável, as conseqüências de estimar o modelo supondo dispersão constante quando de fato ela é variável e de testes assintóticos para testar a hipótese de dispersão constante. Finalmente, utilizando um esquema de bootstrap (Davison e Hinkley,1997), desenvolvemos um procedimento de obtenção de limites de predição para o modelo de regressão com dispersão constante. Ilustramos a teoria desenvolvida com várias aplicações a dados reais. / Practitioners oftentimes wish to investigate how certain variables influence continuous variable that assumes values on the standard unit interval $(0,1)$, such as percentages, proportions, rates and fractions. Linear regression models are not suitable for modelling such data. A class of beta regression models which is in many aspects similar to that of generalised linear models was proposed by Ferrari and Cribari--Neto~(2004). The mean response is related to a linear predictor, which involves covariates and unknown regression parameters, through a link function. The model is also indexed by a precision parameter. Smithson e Verkuilen~(2005), among others, consider the beta regression model with variable dispersion, i.e., beta regression in which the precision parameter is not constant across observations. In this dissertation we develop diagnostic methods for beta regression models with both constant and variable dispersion. The method of local influence (Cook,~1986) proved to be particularly useful, since it is able to identify variable dispersion in the data. We have also used Monte Carlo simulation to evaluate the finite sample performance of maximum likelihood estimators in beta regression models with variable dispersion; we have also evaluated the consequences os misspecifying the model by incorrectly assuming constant dispersion when dispersion is variable and the finite sample behavior of heteroskedasticity tests based on first order asymptotics. of estimating the model supposing constant dispersion when Prediction bootstrap intervals (Davison e Hinkley,~1997) for the beta regression model with constant dispersion are also considered.Practical applications that employ real data are presented and discussed.
|
3 |
\"Regressão beta\" / Beta regressionPatricia Leone Espinheira Ospina 29 March 2007 (has links)
Muitos estudos em diferentes áreas examinam como um conjunto de variáveis influencia algum tipo de percentagem, proporção ou frações. Modelos de regressão lineares não são satisfatórios para modelar tais dados. Uma classe de modelos de regressão beta que em muitos aspectos é semelhante aos modelos lineares generalizados foi proposto por Ferrari e Cribari--Neto~(2004). A resposta média é relacionada com um predictor linear por uma função de ligação e o predictor linear envolve covariáveis e parâmetros de regressão desconhecidos. O modelo também é indexado por um parâmetro de precisão. Smithson e Verkuilen,(2005), entre outros, consideram o modelo de regressão beta em que esse parâmetro varia ao longo das observações. Nesta tese foram desenvolvidas técnicas de diagnóstico para os modelos regressão beta com dispersão constante e com dispersão variável, sendo que o método e influência local (Cook,~1986) mostrou-se decisivo, inclusive no sentido de identificar dispersão variável nos dados. Adicionalmente, avaliamos através de estudos de simulação o desempenho de estimadores de máxima verossimilhança para o modelo de regressão beta com dispersão variável, as conseqüências de estimar o modelo supondo dispersão constante quando de fato ela é variável e de testes assintóticos para testar a hipótese de dispersão constante. Finalmente, utilizando um esquema de bootstrap (Davison e Hinkley,1997), desenvolvemos um procedimento de obtenção de limites de predição para o modelo de regressão com dispersão constante. Ilustramos a teoria desenvolvida com várias aplicações a dados reais. / Practitioners oftentimes wish to investigate how certain variables influence continuous variable that assumes values on the standard unit interval $(0,1)$, such as percentages, proportions, rates and fractions. Linear regression models are not suitable for modelling such data. A class of beta regression models which is in many aspects similar to that of generalised linear models was proposed by Ferrari and Cribari--Neto~(2004). The mean response is related to a linear predictor, which involves covariates and unknown regression parameters, through a link function. The model is also indexed by a precision parameter. Smithson e Verkuilen~(2005), among others, consider the beta regression model with variable dispersion, i.e., beta regression in which the precision parameter is not constant across observations. In this dissertation we develop diagnostic methods for beta regression models with both constant and variable dispersion. The method of local influence (Cook,~1986) proved to be particularly useful, since it is able to identify variable dispersion in the data. We have also used Monte Carlo simulation to evaluate the finite sample performance of maximum likelihood estimators in beta regression models with variable dispersion; we have also evaluated the consequences os misspecifying the model by incorrectly assuming constant dispersion when dispersion is variable and the finite sample behavior of heteroskedasticity tests based on first order asymptotics. of estimating the model supposing constant dispersion when Prediction bootstrap intervals (Davison e Hinkley,~1997) for the beta regression model with constant dispersion are also considered.Practical applications that employ real data are presented and discussed.
|
4 |
Análise de influência local no modelo de regressão logística / Analysis of local influence with the logistic regression modelSouza, Édila Cristina de 09 February 2006 (has links)
Uma etapa importante após a formulação e ajuste de um modelo de regressão é a análise de diagnóstico. A regressão logística tem se constituído num dos principais métodos de modelagem estatística de dados; mesmo quando a resposta de interesse não é originalmente do tipo binário, alguns pesquisadores tem dicotomizado a resposta de modo que a probabilidade de sucesso pode ser modelado através da regressão logística. Neste trabalho consideramos um estudo de diagnóstico no modelo da regressão logística, utilizando as medidas proposta por Pregibon (1981) e a técnica de influência local Cook (1986). Investigamos a aplicação da técnica de influência local sob diferentes esquemas de perturbação. Como ilustração, apresentamos a aplicação dos resultados desenvolvidos em dois conjuntos de dados reais. / An important stage after the formularization and adjustment of a regression model is the diagnosis analysis. Logistic regression is one of the main methods for modeling data and even when the response of interest is is not originally of the binary type, some researchers have dichotomized the response in a way that the success probability can be modeled through logistic regression. In this work we consider a study of diagnosis methods with logistic regression, using the measures proposed by Pregibon (1981) and the local influence technique of Cook (1986). We investigate the application of the local influence technique of under different types of disturbance. As as illustration, we show the application of the developed results obtained with real data sets.
|
5 |
Métodos de diagnóstico para modelos lineares mistos / Diagnotics methods for linear mixed models.Juvencio Santos Nobre 04 March 2004 (has links)
Muitos fenômenos podem ser representados por meio de modelos estatísticos de forma satisfatória. Para validar tais modelos é necessário verificar se as suposições envolvidas estão satisfeitas e se o modelo é sensível a pequenas perturbações; este é o objetivo da análise de diagnóstico. Neste trabalho apresentamos, discutimos e propomos técnicas de diagnóstico em modelos lineares mistos e as ilustramos com um exemplo prático. / Many phenomena can be represented through statistical models in a satisfactory way. To validate such models it is necessary to verify whether the assumptions are satisfied and whether the model is sensitive to small deviations; this constitutes the objective of diagnostic analysis. In this work we present, discuss and propose diagnostic techniques for mixed linear models and illustrate them with a practical example.
|
6 |
Métodos de diagnóstico para modelos lineares mistos / Diagnotics methods for linear mixed models.Nobre, Juvencio Santos 04 March 2004 (has links)
Muitos fenômenos podem ser representados por meio de modelos estatísticos de forma satisfatória. Para validar tais modelos é necessário verificar se as suposições envolvidas estão satisfeitas e se o modelo é sensível a pequenas perturbações; este é o objetivo da análise de diagnóstico. Neste trabalho apresentamos, discutimos e propomos técnicas de diagnóstico em modelos lineares mistos e as ilustramos com um exemplo prático. / Many phenomena can be represented through statistical models in a satisfactory way. To validate such models it is necessary to verify whether the assumptions are satisfied and whether the model is sensitive to small deviations; this constitutes the objective of diagnostic analysis. In this work we present, discuss and propose diagnostic techniques for mixed linear models and illustrate them with a practical example.
|
7 |
穩健迴歸轉換與區域影響分析 / Robust Regression Transformation and Diagnostics Using Local Influence黃逸勤 Unknown Date (has links)
無
|
8 |
Análise de influência local no modelo de regressão logística / Analysis of local influence with the logistic regression modelÉdila Cristina de Souza 09 February 2006 (has links)
Uma etapa importante após a formulação e ajuste de um modelo de regressão é a análise de diagnóstico. A regressão logística tem se constituído num dos principais métodos de modelagem estatística de dados; mesmo quando a resposta de interesse não é originalmente do tipo binário, alguns pesquisadores tem dicotomizado a resposta de modo que a probabilidade de sucesso pode ser modelado através da regressão logística. Neste trabalho consideramos um estudo de diagnóstico no modelo da regressão logística, utilizando as medidas proposta por Pregibon (1981) e a técnica de influência local Cook (1986). Investigamos a aplicação da técnica de influência local sob diferentes esquemas de perturbação. Como ilustração, apresentamos a aplicação dos resultados desenvolvidos em dois conjuntos de dados reais. / An important stage after the formularization and adjustment of a regression model is the diagnosis analysis. Logistic regression is one of the main methods for modeling data and even when the response of interest is is not originally of the binary type, some researchers have dichotomized the response in a way that the success probability can be modeled through logistic regression. In this work we consider a study of diagnosis methods with logistic regression, using the measures proposed by Pregibon (1981) and the local influence technique of Cook (1986). We investigate the application of the local influence technique of under different types of disturbance. As as illustration, we show the application of the developed results obtained with real data sets.
|
9 |
Inferencia e diagnostico em modelos para dados de contagem com excesso de zeros / Inference and diagnostic in zero-inflated count data modelsMonzón Montoya, Alejandro Guillermo 13 August 2018 (has links)
Orientador: Victor Hugo Lachos Davila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T06:59:43Z (GMT). No. of bitstreams: 1
MonzonMontoya_AlejandroGuillermo_M.pdf: 1229957 bytes, checksum: a4ad33aa2fe94f8744977822a1fd1362 (MD5)
Previous issue date: 2009 / Resumo: Em análise de dados, muitas vezes encontramos dados de contagem onde a quantidade de zeros excede aquela esperada sob uma determinada distribuição, tal que não é possível fazer uso dos modelos de regressão usuais. Além disso, o excesso de zeros pode fazer com que exista sobredispersão nos dados. Neste trabalho são apresentados quatro tipos de modelos para dados de contagem inflacionados de zeros: o modelo Binomial (ZIB), o modelo Poisson (ZIP), o modelo binomial negativa (ZINB) e o modelo beta-binomial (ZIBB). Usa-se o algoritmo EM para obter estimativas de máxima verossimilhança dos parâmetros do modelo e usando a função de log-verossimilhança dos dados completos obtemos medidas de influência local baseadas na metodologia proposta por Zhu e Lee (2001) e Lee e Xu (2004). Também propomos como construir resíduos para os modelos ZIB e ZIP. Finalmente, as metodologias descritas são ilustradas pela análise de dados reais / Abstract: When analyzing count data sometimes a high frequency of extra zeros is observed and the usual regression analysis is not applicable. This feature may be accounted for by over-dispersion in the data set. In this work, four types of models for zero inflated count data are presented: viz., the zero-inflated Binomial (ZIB), the zero-inflated Poisson (ZIP), the zero-inflated Negative Binomial (ZINB) and the zero-inflated Beta-Binomial (ZIBB) regression models. We use the EM algorithm to obtain maximum likelihood estimates of the parameter of the proposed models and by using the complete data likelihood function we develop local influence measures following the approach of Zhu and Lee (2001) and Lee and Xu (2004). We also discuss the calculation of residuals for the ZIB and ZIP regression models with the aim of identifying atypical observations and/or model misspecification. Finally, results obtained for two real data sets are reported, illustrating the usefulness of the proposed methodology / Mestrado / Mestre em Estatística
|
10 |
Influencia local em modelos de series temporais / Local influence in time series modelsSantos, Bruno Reis dos 25 April 2008 (has links)
Orientador: Mauricio Enrique Zevallos Herencia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da Computação / Made available in DSpace on 2018-08-11T01:10:13Z (GMT). No. of bitstreams: 1
Santos_BrunoReisdos_M.pdf: 1935776 bytes, checksum: f3579f38b051dcbc18a4a0f79c2d6ab2 (MD5)
Previous issue date: 2008 / Resumo: Nesta dissertação é discutido o uso da metodologia de diagnóstico de Influência Local em modelos de séries temporais. Especificamente, serão estudados os modelos autoregressivos de ordem um, os modelos de regressão com erros autoregressivos de ordem um e modelos de longa-memória. As medidas de influência local consideradas são: Inclinação de Billor e Loynes e Curvatura de Cook. As principais contribuições nesta dissertação são duas. Primeiro, a utilização da metodologia de limiares (benchmarks) nos modelos mencionados para determinar se uma observação é influente. Isto permite ter uma ferramenta estatística para identificar pontos influentes a diferença da simples análise exploratória que é o mais comum na literatura. Como segunda contribuição, serão obtidas as expressões para o cálculo das medidas de Inclinação de Billor e Curvatura de Cook nos modelos ARFIMA. Finalmente, as metodologias descritas são ilustradas através de dados simulados e da análise de dados reais / Abstract: This work is about Time Series Diagnostics using Local Influence. Specifically, firstorder autoregressive models, regression models with first-order autoregressive errors and long-memory models are studied. In order to assess Local Influence two statistics are considered: the Slope of Billor and Loynes and Cook¿s Curvature. The main contributions are two. First, apply a methodology based on benchmarks calculated by simulation on the aforementioned models for determining influential observations. This permits to have a statistical tool to identify influential points instead of the simple exploratory analysis, which is the most common device in the literature. Second, expressions for Billor and Loynes Slope and Cook¿s Curvature in ARFIMA models are derived. Finally, all methodologies are illustrated using simulated data and the analysis of real data / Mestrado / Series Temporais / Mestre em Estatística
|
Page generated in 0.0902 seconds