1 |
Inert Subgroups And Centralizers Of Involutions In Locally Finite Simple GroupsOzyurt, Erdal 01 September 2003 (has links) (PDF)
abstract
INERT SUBGROUPS AND CENTRALIZERS OF
INVOLUTIONS IN LOCALLY FINITE SIMPLE
GROUPS
¨ / Ozyurt, Erdal
Ph. D., Department of Mathematics
Supervisor: Prof. Dr. Mahmut Kuzucuo& / #728 / glu
September 2003, 68 pages
A subgroup H of a group G is called inert if [H : H Hg] is finite for all
g 2 G. A group is called totally inert if every subgroup is inert. Among the
basic properties of inert subgroups, we prove the following. Let M be a maximal
subgroup of a locally finite group G. If M is inert and abelian, then G is soluble
with derived length at most 3. In particular, the given properties impose a strong
restriction on the derived length of G.
We also prove that, if the centralizer of every involution is inert in an infinite
locally finite simple group G, then every finite set of elements of G can not be
contained in a finite simple group. In a special case, this generalizes a Theorem
of Belyaev& / #8211 / Kuzucuo& / #728 / glu& / #8211 / Se¸ / ckin, which proves that there exists no infinite locally
finite totally inert simple group.
|
2 |
Sobre Centralizadores de Automorfismos Coprimos em Grupos Profinitos e Álgebras de Lie / About Centralized coprime automorphisms Profinitos Groups and Lie AlgebrasLIMA, Márcio Dias de 27 June 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1
Dissertacao Marcio Lima.pdf: 1529346 bytes, checksum: c6a80a13d55b40203c44877c4cdeb1f4 (MD5)
Previous issue date: 2011-06-27 / A be an elementary abelian group of order q2, where q a prime number. In this paper we
will study the influence of centering on the structure of automorphism groups profinitos
in this sense if A acting as a coprime group of automorphisms on a group profinito G and
CG(a) is periodic for each a 2 A#, then we will show that G is locally finite. It will be
demonstrated also the case where A acts as a group of automorphisms of a group pro-p of G / Sejam A um grupo abeliano elementar de ordem q2, onde q um número primo. Neste
trabalho estudamos a influência dos centralizadores de automorfismos na estrutura dos
grupos profinitos, neste sentido se A age como um grupo de automorfismos coprimos
sobre um grupo profinito G e que CG(a) é periódico para cada a 2 A#, então mostraremos
que G é localmente finito. Será demonstrado também o caso onde A age como um grupo
de automorfismos sobre um grupo pro-p de G.
|
Page generated in 0.0537 seconds