Spelling suggestions: "subject:"locationation"" "subject:"locationization""
1 |
Locating-Domination in Complementary Prisms.Holmes, Kristin Renee Stone 09 May 2009 (has links) (PDF)
Let G = (V (G), E(G)) be a graph and G̅ be the complement of G. The complementary prism of G, denoted GG̅, is the graph formed from the disjoint union of G and G̅ by adding the edges of a perfect matching between the corresponding vertices of G and G̅. A set D ⊆ V (G) is a locating-dominating set of G if for every u ∈ V (G)D, its neighborhood N(u)⋂D is nonempty and distinct from N(v)⋂D for all v ∈ V (G)D where v ≠ u. The locating-domination number of G is the minimum cardinality of a locating-dominating set of G. In this thesis, we study the locating-domination number of complementary prisms. We determine the locating-domination number of GG̅ for specific graphs and characterize the complementary prisms with small locating-domination numbers. We also present bounds on the locating-domination numbers of complementary prisms.
|
2 |
Trees with Unique Minimum Locating-Dominating Sets.Lane, Stephen M 06 May 2006 (has links) (PDF)
A set S of vertices in a graph G = (V, E) is a locating-dominating set if S is a dominating set of G, and every pair of distinct vertices {u, v} in V - S is located with respect to S, that is, if the set of neighbors of u that are in S is not equal to the set of neighbors of v that are in S. We give a construction of trees that have unique minimum locating-dominating sets.
|
Page generated in 0.1192 seconds