• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Locating-Domination in Complementary Prisms.

Holmes, Kristin Renee Stone 09 May 2009 (has links) (PDF)
Let G = (V (G), E(G)) be a graph and G̅ be the complement of G. The complementary prism of G, denoted GG̅, is the graph formed from the disjoint union of G and G̅ by adding the edges of a perfect matching between the corresponding vertices of G and G̅. A set D ⊆ V (G) is a locating-dominating set of G if for every u ∈ V (G)D, its neighborhood N(u)⋂D is nonempty and distinct from N(v)⋂D for all v ∈ V (G)D where v ≠ u. The locating-domination number of G is the minimum cardinality of a locating-dominating set of G. In this thesis, we study the locating-domination number of complementary prisms. We determine the locating-domination number of GG̅ for specific graphs and characterize the complementary prisms with small locating-domination numbers. We also present bounds on the locating-domination numbers of complementary prisms.
2

Trees with Unique Minimum Locating-Dominating Sets.

Lane, Stephen M 06 May 2006 (has links) (PDF)
A set S of vertices in a graph G = (V, E) is a locating-dominating set if S is a dominating set of G, and every pair of distinct vertices {u, v} in V - S is located with respect to S, that is, if the set of neighbors of u that are in S is not equal to the set of neighbors of v that are in S. We give a construction of trees that have unique minimum locating-dominating sets.

Page generated in 0.1376 seconds