• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementierung gemischter Finite-Element-Formulierungen für polykonvexe Verzerrungsenergiefunktionen elastischer Kontinua / Implementation of mixed finite elements for polyconvex strain energy functions

Dietzsch, Julian 11 January 2017 (has links) (PDF)
In der vorliegenden Arbeit wird ein gemischtes Element gegen Locking-Effekte untersucht. Dazu wird ein Fünf-Feld-Hu-Washizu-Funktional (CoFEM-Element) für lineare und quadratische Hexaeder-Elemente unter einer hyperelastischen, isotropen, polykonvexen sowie einer transversal-isotropen Materialformulierung implementiert. Die resultierenden nichtlinearen Gleichungen werden mithilfe eines Mehrebenen-NEWTON-RAPHSON-Verfahren unter Beachtung einer konsistenten Linearisierung gelöst. Als repräsentatives Beispiel der numerischen Untersuchungen dient der einseitig eingespannte Cook-Balken mit einer quadratischen Druckverteilung am Rand. Zur Beurteilung des CoFEM-Elements wird das räumliche Konvergenzverhalten für unterschiedliche Polynomgrade und für verschiedene Netze unter Beachtung der algorithmischen Effizienz untersucht. / This paper presents a mixed finite element formulation of Hu-Washizu type (CoFEM) designed to reduce locking effects with respect to a linear and quadratic approximation in space. We consider a hyperelastic, isotropic, polyconvex material formulation as well as transverse isotropy. The resulting nonlinear algebraic equations are solved with a multilevel NEWTON-RAPHSON method. As a numerical example serves a cook-like cantilever beam with a quadratic distribution of in-plane load on the Neumann boundary. We analyze the spatial convergence with respect to the polynomial degree of the underlying Lagrange polynomials and with respect to the level of mesh refinement in terms of algorithmic efficiency.
2

Implementierung gemischter Finite-Element-Formulierungen für polykonvexe Verzerrungsenergiefunktionen elastischer Kontinua

Dietzsch, Julian 21 July 2016 (has links)
In der vorliegenden Arbeit wird ein gemischtes Element gegen Locking-Effekte untersucht. Dazu wird ein Fünf-Feld-Hu-Washizu-Funktional (CoFEM-Element) für lineare und quadratische Hexaeder-Elemente unter einer hyperelastischen, isotropen, polykonvexen sowie einer transversal-isotropen Materialformulierung implementiert. Die resultierenden nichtlinearen Gleichungen werden mithilfe eines Mehrebenen-NEWTON-RAPHSON-Verfahren unter Beachtung einer konsistenten Linearisierung gelöst. Als repräsentatives Beispiel der numerischen Untersuchungen dient der einseitig eingespannte Cook-Balken mit einer quadratischen Druckverteilung am Rand. Zur Beurteilung des CoFEM-Elements wird das räumliche Konvergenzverhalten für unterschiedliche Polynomgrade und für verschiedene Netze unter Beachtung der algorithmischen Effizienz untersucht. / This paper presents a mixed finite element formulation of Hu-Washizu type (CoFEM) designed to reduce locking effects with respect to a linear and quadratic approximation in space. We consider a hyperelastic, isotropic, polyconvex material formulation as well as transverse isotropy. The resulting nonlinear algebraic equations are solved with a multilevel NEWTON-RAPHSON method. As a numerical example serves a cook-like cantilever beam with a quadratic distribution of in-plane load on the Neumann boundary. We analyze the spatial convergence with respect to the polynomial degree of the underlying Lagrange polynomials and with respect to the level of mesh refinement in terms of algorithmic efficiency.

Page generated in 0.105 seconds