• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réseaux de neurones et fonction respiratoire : mécanismes sensorimoteurs à la base du coupage locomotion-respiration

Giraudin, Aurore 12 December 2008 (has links)
La respiration est une activité motrice autonome rythmique au cours de laquelle de nombreux muscles se contractent de manière coordonnée afin de produire des mouvements ventilatoires adaptés aux contraintes environnementales et aux exigences de l'organisme. Cette fonction vitale doit être fiable et adaptable à très court terme, c’est pourquoi elle est influencée, entre autres, par un grand nombre d’activités motrices. Par exemple, lors d’exercices physiques, le rythme respiratoire peut se coupler au rythme locomoteur. Les objectifs de ce travail doctoral sont centrés sur l’exploration des mécanismes neurogènes à la base du couplage entre ces deux fonctions motrices chez le rat nouveau-né. Pour une grande partie, cette étude a été réalisée sur préparation isolée in vitro de tronc cérébral-moelle épinière de rat nouveau-né (0 à 3 jours), ce modèle permettant de conserver dans leur intégrité les centres responsables des rythmes respiratoire et locomoteur. Compte tenu de l’accessibilité directe aux réseaux neuronaux, les mécanismes de couplage et d'entraînement respiratoire ont été abordés par des approches combinées électrophysiologique, neuroanatomique, pharmacologique et lésionnelle. Dans ce contexte, un des principaux résultats de ce travail doctoral est le rôle crucial joué par les informations sensorielles en provenance des membres antérieurs et postérieurs dans l'entraînement respiratoire observé lors de séquences locomotrices. Ainsi, les afférences proprioceptives spinales capables de réinitialiser et d'entraîner l’activité des centres respiratoires bulbaires via un relais pontique, établissent également des connexions sur l’ensemble des populations de motoneurones spinaux respiratoires phréniques, intercostaux et abdominaux. / Respiration is an autonomous rhythmic motor activity that requires the coordinated contractions of diverse muscles to produce ventilatory movements adapted to organismal needs. This crucial physiological function must be reliable and adaptable on a short-term basis, and requires coordianted movements with various other motor activities. For instance, respiratory rhythmicity becomes coupled to locomotion during physical exercise. My doctoral work aimed to explore the neurogenic mechanisms underlying the interactions between these two motor functions in the neonatal rat. This work was mainly conducted on isolated in vitro brain stem-spinal cord preparations of newborn rats (0-3 days), an experimental model that allows the maintenance of the still functional respiratory and locomotor CPGs in vitro. Due to the easy access to the neuronal networks in these preparations, locomotor-respiratory coupling and respiratory entrainment mechanisms were investigated by combined electrophysiological, neuroanatomical, pharmacological and lesional approaches. A major finding was the crucial played by sensory information from fore- and hindlimb in respiratory entrainment induced by locomotor rythmicity. Spinal sensory afferents can reset and entrain the activity of the medullary respiratory centres via a pontine relay, as well as making direct connections with the various spinal respiratory motoneuron (phrenic, intercostal and abdominal) populations.
2

Characterising the influence of pre-drive lung volume on force and power production during rowing

Gibbs, A. P. January 2007 (has links)
Purpose: This study evaluated the effect of lung volume at the catch position to force and power outputs during single maximal effort strokes in rowing. Responses were compared when the participants were ‘fresh’ and following specific inspiratory muscle fatigue (IMF). In addition, a single subject pilot study was performed to characterise the changes in intra-thoracic (ITP), intra-abdominal (IAP) and trans-diaphragmatic (Pdi) pressures during a 30 second maximal effort piece on a rowing ergometer. Methods: Nine male rowers of international standard participated in the research. Static force, as well as the power produced during a single stroke were assessed at residual volume (RV), 25%TLC, 50%TLC, 75%TLC, total lung capacity (TLC), and a self-selected lung volume (S-S). Lung volumes were derived from maximal flow-volume loops (MFVLs) and achieved using online real-time feedback. Inspiratory muscle fatigue (IMF) was induced by breathing against an inspiratory load equivalent to 80% baseline maximal inspiratory pressure (MIP), at a breathing frequency (fB) of 15 breaths per minute, and a duty cycle of 0.6. Expiration was unimpeded. The single subject pilot study was undertaken using balloon catheters to measure ITP, IAP, and Pdi during a 30 second maximal effort free-rating piece on the ergometer. Results: There was no significant effect of lung volume upon either force or power production. The RMF protocol induced a significant reduction in MIP (159.9 ± 70.8 vs. 106.8 ± 58.7 cmH2O; p = 0.000), but not maximal expiratory pressure (MEP; 159.9 ± 79.2 vs. 166.6 ± 53.0 cmH2O; p = 0.376). RMF induced a significant reduction in force output with increasing lung volume, across all lung volumes (mean force 1313.4 ± 31.9 vs. 1209.6 ± 45.0N; p < 0.008), but not power (mean power 598.6 ± 31.9 vs. 592.7 ± 45.0W; p > 0.05). Self-selected lung volumes were consistent across all tests for force and power (mean 38.1 ± 6.9% [Force] vs. 28.2 ± 0.6% [Power]; p > 0.017). The pilot study indicated that internal pressures fluctuate markedly during maximal effort rowing (pressure, [max, min, average] cmH2O; IAP [144.69, 7.46, 73.59], ITP [75, -22.65, 15.34], Pdi [111.84, 7.09, 58.83]), suggesting that the trunk muscles play an active role in power production during rowing. Conclusion: The present study suggests that there is no significant effect of lung volume on force or power when athletes are in a fresh condition. However, a decrement in force production is present with inspiratory muscle fatigue. Combined with evidence of high internal pressures during maximal effort rowing, these data may indicate a role for the inspiratory muscles in force production during rowing.
3

Cardiovascular and ventilatory limitations in the oxygen transport pathway

Padilla, Danielle Jessica January 1900 (has links)
Doctor of Philosophy / Department of Anatomy and Physiology / David C. Poole / The components of the O2 transport pathway can be divided into (along with their respective circulations) the pulmonary, cardiovascular, and skeletal muscle systems. They must operate in tight conjunction with one another, especially during dynamic exercise, to sustain ATP production within muscle mitochondria. Any limitation placed on the O2 transport pathway will result in decreased performance. The purpose of this dissertation is to present four novel studies which examine specific limitations on (1) the pulmonary system (i.e. lungs and circulation) within the highly athletic Thoroughbred horse (Studies A & B), and (2) within the peripheral circulation (i.e. microcirculation) within a disease model of Type II diabetes, the Goto-Kakizaki (GK) rat (Studies C & D). Study A demonstrates that locomotory respiratory coupling (LRC) is not requisite for the horse to achieve maximal minute ventilation (VE) during galloping exercise because VE remains at the peak exercising levels over the first ~13 s of trotting recovery (VE at end exercise: 1391±88; VE at 13 s: 1330±112 L/sec; P > 0.05). The horse also experiences exercise-induced pulmonary hemorrhage (EIPH) which has been linked mechanistically to increased pulmonary artery pressure (Ppa) during high intensity exercise. Therefore, in Study B, we hypothesized that endothelin-1 (ET-1), a powerful vasoconstricting hormone, would play a role in the augmented Ppa and therefore, EIPH. However, contrary to our hypothesis, an ET-1 receptor antagonist did not decrease Ppa nor prevent or reduce EIPH. Studies C and D examine potential mechanisms behind the exercise intolerance observed in humans with Type II diabetes. Utilizing phosphorescence quenching techniques (Study C) within the GK spinotrapezius muscle, we found lowered microvascular PO2 (PO2mv; Control: 28.8±2.0; GK: 18.4±1.8 mmHg; P<0.05) at rest and a PO2mv “undershoot” during muscle contractions. After conducting intravital microscopy within the same muscle (Study D), we discovered the percentage of RBC-perfused capillaries was decreased (Control: 93±3; GK: 66±5 %; P<0.05) and all three major hemodynamic variables (i.e. RBC velocity, flux, and capillary tube hematocrit) were significantly attenuated. Both studies (C & D) indicate that there is reduced O2 availability (via decreased O2 delivery; i.e. ↓QO2/VO2) within Type II diabetic muscle.
4

Synchronisation des rythmes locomoteur et respiratoire : influence de stimulations sensorielles et intérêt pour la performance / Synchronization of locomotor and respiratory rhythms : impact of sensory stimuli and application for performance

Hoffmann, Charles 11 July 2014 (has links)
L'observation d'une synchronisation entre les systèmes locomoteur et respiratoire soulève de nombreuses questions concernant son utilité fonctionnelle pour l'organisme et les contraintes susceptibles de moduler son apparition. A l'heure actuelle, des contradictions subsistent dans les réponses apportées à ces interrogations, notamment en raison de la multiplicité des méthodes employées pour l'étude de ce phénomène. La théorie des oscillateurs couplés, et plus particulièrement le modèle de la sine circle map, nous permet de rendre compte de façon précise des relations de couplage entre les systèmes locomoteur et respiratoire. Les objectifs de ce travail de thèse sont de renforcer la validité de l'utilisation de ce modèle pour l'étude du couplage locomotion-respiration (CLR), d'examiner le lien entre le CLR et la performance sportive, ainsi qu'identifier les contraintes influençant les relations de couplage entre ces deux systèmes. Dans des tâches de pédalage ou de course à pied, les participants avaient pour consigne ou non de synchroniser leur locomotion ou leur respiration avec une stimulation auditive dont le tempo correspondait à leurs fréquences préférentielles (locomotrice ou respiratoire). Nos résultats montrent l'efficacité du rythme auditif pour induire une stabilisation du CLR, indépendamment de la consigne donnée aux participants et du système rythmé. Ces résultats révèlent une bidirectionnalité dans le couplage entre les systèmes locomoteur et respiratoire. De plus, nous mettons en évidence une forte corrélation entre le gain de stabilité entre les deux systèmes et le gain de consommation d'oxygène (i.e., diminution). Par conséquent, la stabilité du CLR est un facteur important à prendre en compte pour la performance sportive. Nous rapportons également une déstabilisation du CLR lors de l'éloignement d'un des deux systèmes de sa fréquence préférentielle. Ce résultat suggère l'adoption spontanée par les individus d'une synchronisation optimale entre les deux systèmes. Ainsi, il semble primordial de présenter une stimulation adaptée à chacun et adaptable aux changements de fréquences locomotrice ou respiratoire imposés par les contraintes de la tâche. Pris ensemble, nos résultats permettent une meilleure compréhension de l'évolution du CLR face aux contraintes qui lui sont imposées (e.g., fréquences locomotrice ou respiratoire, rythme auditif, modalité d'exercice) et mettent en évidence l'influence positive de sa stabilité sur la performance sportive. Nous rapportons également l'efficacité d'une stimulation visuelle pour apprendre à mieux gérer les ressources énergétiques au cours de l'effort. Ainsi, ce travail ouvre des perspectives de travaux sur l'utilisation d'une stimulation auditive ou visuelle, simple (e.g., métronome) ou complexe (e.g., musique, avatar), dans le cadre de l'entraînement et de l'amélioration de la performance sportive. / The natural synchronization between locomotor and respiratory systems raises many questions regarding its functional utility for the organism, as well as constraints that may modulate its appearance. Currently, contradictions remain in answers provided to these issues, especially because of the multiple methods used to study this phenomenon. The theory of coupled oscillators, and more specifically the sine circle map model, allows to accurately assess the coupling between locomotor and respiratory systems. This work aims at strengthening the validity of the use of this model for the study of locomotor-respiratory coupling (LRC), examining the relationship between LRC and sport performance, as well as identifying the constraints influencing the coupling between both systems. In pedalling or running tasks, participants were instructed or not to synchronize their locomotion or their breathing with an auditory rhythm which tempo matched their preferred frequencies (locomotor or respiratory). Our results show the effectiveness of auditory rhythm to induce stabilization of LRC, regardless of the instructions given to participants and the system paced. These results reflect a bidirectionality in the coupling between the locomotor and respiratory systems. Furthermore, we show a strong correlation between the increase in stability between the two systems and the gain in oxygen consumption (i.e., decrease). Therefore, the stability of LRC is an important factor to consider for sport performance. We also report a destabilization of LRC when one of the two systems is far off its preferred frequency. This result suggests that individuals spontaneously adopt an optimum synchronization between the two systems. Thus, it seems important to use a customized suitable stimulation that could be able to adapt its tempo to changes in locomotor or respiratory frequencies imposed by the constraints of the task. Overall, our results provide a better understanding of the evolution of LRC when confronted to constraints (e.g., locomotor or respiratory frequencies, auditory rhythm, exercise modality) and highlight the positive impact of its stability on sport performance. We also report the effectiveness of a visual stimulation to learn how to better manage energy resources during effort. Thus, this work opens perspectives on the use of auditory or visual stimuli, simple (e.g., metronome) or complex (e.g., music, avatar), for training and performance enhancement.

Page generated in 0.0952 seconds