• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Self-calibrating random access logarithmic pixel for on chip camera

Hong, Augustin Jinwoo 29 August 2005 (has links)
CMOS active pixel sensors (APS) have shown competitive performance with charge-coupled device (CCD) and offer many advantages in cost, system power reduction and on-chip integration of VLSI electronics. Among CMOS image sensors, sensors with logarithmic pixels are particularly applicable for outdoor environment where the light intensity varies over a wide range. They are also randomly accessible in both time and space. A major drawback comes from process variations during fabrication. This gives rise to a considerable fixed pattern noise (FPN) which deteriorates the image quality. In this thesis, a technique that greatly reduces FPN using on-chip calibration is introduced. An image sensor that consists of 64x64 active pixels has been designed, fabricated and tested. Pixel pitch is 18um x 19.2um? and is fabricated in a 0.5-um? CMOS process. The proposed pixel circuit considerably reduces the FPN as predicted in theoretical analysis. The measured FPN value is 2.29% of output voltage swing and column-wise FPN is 1.49% of mean output voltage over each column.
2

Self-calibrating random access logarithmic pixel for on chip camera

Hong, Augustin Jinwoo 29 August 2005 (has links)
CMOS active pixel sensors (APS) have shown competitive performance with charge-coupled device (CCD) and offer many advantages in cost, system power reduction and on-chip integration of VLSI electronics. Among CMOS image sensors, sensors with logarithmic pixels are particularly applicable for outdoor environment where the light intensity varies over a wide range. They are also randomly accessible in both time and space. A major drawback comes from process variations during fabrication. This gives rise to a considerable fixed pattern noise (FPN) which deteriorates the image quality. In this thesis, a technique that greatly reduces FPN using on-chip calibration is introduced. An image sensor that consists of 64x64 active pixels has been designed, fabricated and tested. Pixel pitch is 18um x 19.2um? and is fabricated in a 0.5-um? CMOS process. The proposed pixel circuit considerably reduces the FPN as predicted in theoretical analysis. The measured FPN value is 2.29% of output voltage swing and column-wise FPN is 1.49% of mean output voltage over each column.

Page generated in 0.0588 seconds