461 |
Vektorprodukten: historik och egenskaperHansen Mohisenpour, Gyri January 2014 (has links)
No description available.
|
462 |
Det allmänna måttproblemet & Hausdorffs paradoxLakso, Johan January 2015 (has links)
No description available.
|
463 |
Gaussiska heltalWallén, Maja January 2014 (has links)
No description available.
|
464 |
Fibonacci och hans matematik : En titt på Fibonaccis matematiska liv och det han lämnat efter sigWettergren, Leila January 2014 (has links)
No description available.
|
465 |
Perron–Frobenius theorem and Z≥0[S3]-semimodulesCuszynski-Kruk, Mikolaj January 2022 (has links)
In this thesis, the Perron–Frobenius theorem which in its most general formstates that the spectral radius of a non-negative real square matrix is an eigenvaluewith a non-negative eigenvector, is proven. Related properties arederived, in particular the Collatz–Wielandt formula and a general form of anon-negative idempotent matrices. Furthermore, let Rn be the sub-semi-ringof Z≥0[Sn] generated by the Kazhdan–Lusztig basis. a description of R2-semimodules,R3-semi-modules and a classification of elementary R3-semi-modulesis given.
|
466 |
Triangulated CategoriesNorlén Jäderberg, Mika January 2022 (has links)
No description available.
|
467 |
The Eisenstein integers and cubic reciprocityLöfgren, Simon January 2022 (has links)
No description available.
|
468 |
A Semantic Approach to Computation : Representing the Partial Recursive Functions in Lambda CalculusSolig, Tim January 2022 (has links)
No description available.
|
469 |
The 0-1 Law and quantifier elimination in finite structuresSköldberg, Linus January 2022 (has links)
No description available.
|
470 |
An Overwiev Of The Rado GraphAlverbro, Miranda January 2022 (has links)
This paper examines the Rado graph, the unique, countably infinite, universalgraph. Many of the central properties are covered in detail, and various constructionsare provided, using results from a variety of fields of mathematics. A variantof the Rado graph was initially constructed by Ackermann. The actual Rado graphwas studied later, by Erdős and Rényi, before Rado rediscovered it from a differentperspective. A multitude of other authors have since then contributed to the subject.
|
Page generated in 0.0572 seconds