Spelling suggestions: "subject:"long pairs"" "subject:"love pairs""
1 |
Transition metal oxofluorides comprising lone pair elements : Synthesis and CharacterizationHu, Shichao January 2014 (has links)
Within the family of transition metal oxochlorides/bromides containing lone pair elements, the transition metal cations often adopt a low-dimensional arrangement such as 2D layers, 1D chains or 0D clusters. The reduced dimensionality is attributed to the presence of stereochemically active lone pairs which are positioned in the non-bonding orbital and will not participate in bond formation and instead act as structural spacers that help to separate coordination polyhedra around transition metal cations from forming three dimensional networks. On the other hand, the chlorine and bromine ions also play an important role to open up the crystal structure because of their low coordination number. However, fluorine has been rarely used in this concept due to the difficulties in synthesis. This thesis is focused on finding new compounds in the M-L-O-F system (M = transition metal cation, L= p-block lone pair elements such as Te4+, Se4+, or Sb3+) in order to study the structural character of fluorine. Hydrothermal reactions have been adopted instead of conventional chemical transport reactions that are commonly used for synthesizing compounds in the M-L-O-(Cl, Br) family. A total of 8 new transition metal oxofluorides containing lone pair elements have been synthesized and their structures have been determined via single crystal X-ray diffraction. Bond valence sum calculations are used to distinguish in between fluorine and oxygen due to their very similar X-ray scattering factors. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
|
2 |
Structure-property relationships in solid state materials: a computational approach emphasizing chemical bondingStoltzfus, Matthew W. 20 September 2007 (has links)
No description available.
|
Page generated in 0.0447 seconds