• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 125
  • 125
  • 125
  • 125
  • 83
  • 70
  • 58
  • 49
  • 45
  • 45
  • 44
  • 43
  • 42
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic Programming Code Explanation Generation with Structured Translation Models

January 2020 (has links)
abstract: Learning programming involves a variety of complex cognitive activities, from abstract knowledge construction to structural operations, which include program design,modifying, debugging, and documenting tasks. In this work, the objective was to explore and investigate the barriers and obstacles that programming novice learners encountered and how the learners overcome them. Several lab and classroom studies were designed and conducted, the results showed that novice students had different behavior patterns compared to experienced learners, which indicates obstacles encountered. The studies also proved that proper assistance could help novices find helpful materials to read. However, novices still suffered from the lack of background knowledge and the limited cognitive load while learning, which resulted in challenges in understanding programming related materials, especially code examples. Therefore, I further proposed to use the natural language generator (NLG) to generate code explanations for educational purposes. The natural language generator is designed based on Long Short Term Memory (LSTM), a deep-learning translation model. To establish the model, a data set was collected from Amazon Mechanical Turks (AMT) recording explanations from human experts for programming code lines. To evaluate the model, a pilot study was conducted and proved that the readability of the machine generated (MG) explanation was compatible with human explanations, while its accuracy is still not ideal, especially for complicated code lines. Furthermore, a code-example based learning platform was developed to utilize the explanation generating model in programming teaching. To examine the effect of code example explanations on different learners, two lab-class experiments were conducted separately ii in a programming novices’ class and an advanced students’ class. The experiment result indicated that when learning programming concepts, the MG code explanations significantly improved the learning Predictability for novices compared to control group, and the explanations also extended the novices’ learning time by generating more material to read, which potentially lead to a better learning gain. Besides, a completed correlation model was constructed according to the experiment result to illustrate the connections between different factors and the learning effect. / Dissertation/Thesis / Doctoral Dissertation Engineering 2020
2

Realization of LSTM Based Cognitive Radio Network

Valluru, Aravind-Deshikh 08 1900 (has links)
This thesis presents the realization of an intelligent cognitive radio network that uses long short term memory (LSTM) neural network for sensing and predicting the spectrum activity at each instant of time. The simulation is done using Python and GNU Radio. The implementation is done using GNU Radio and Universal Software Radio Peripherals (USRP). Simulation results show that the confidence factor of opportunistic users not causing interference to licensed users of the spectrum is 98.75%. The implementation results demonstrate high reliability of the LSTM based cognitive radio network.
3

Prediction of the number of weekly covid-19 infections : A comparison of machine learning methods

Branding, Nicklas January 2022 (has links)
The thesis two-folded problem aim was to identify and evaluate candidate Machine Learning (ML) methods and performance methods, for predicting the weekly number of covid-19 infections. The two-folded problem aim was created from studying public health studies where several challenges were identified. One challenge identified was the lack of using sophisticated and hybrid ML methods in the public health research area. In this thesis a comparison of ML methods for predicting the number of covid-19 weekly infections has been performed. A dataset taken from the Public Health Agency in Sweden consisting of 101weeks divided into a 60 % training set and a 40% testing set was used in the evaluation. Five candidate ML methods have been investigated in this thesis called Support Vector Regressor (SVR), Long Short Term Memory (LSTM), Gated Recurrent Network (GRU), Bidirectional-LSTM (BI-LSTM) and LSTM-Convolutional Neural Network (LSTM-CNN). These methods have been evaluated based on three performance measurements called Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R2. The evaluation of these candidate ML resulted in the LSTM-CNN model performing the best on RMSE, MAE and R2.
4

Hybrid Analysis of Android Applications for Security Vetting

Chaulagain, Dewan 10 May 2019 (has links)
No description available.
5

ASIC implementation of LSTM neural network algorithm

Paschou, Michail January 2018 (has links)
LSTM neural networks have been used for speech recognition, image recognition and other artificial intelligence applications for many years. Most applications perform the LSTM algorithm and the required calculations on cloud computers. Off-line solutions include the use of FPGAs and GPUs but the most promising solutions include ASIC accelerators designed for this purpose only. This report presents an ASIC design capable of performing the multiple iterations of the LSTM algorithm on a unidirectional and without peepholes neural network architecture. The proposed design provides arithmetic level parallelism options as blocks are instantiated based on parameters. The internal structure of the design implements pipelined, parallel or serial solutions depending on which is optimal in every case. The implications concerning these decisions are discussed in detail in the report. The design process is described in detail and the evaluation of the design is also presented to measure accuracy and error of the design output.This thesis work resulted in a complete synthesizable ASIC design implementing an LSTM layer, a Fully Connected layer and a Softmax layer which can perform classification of data based on trained weight matrices and bias vectors. The design primarily uses 16-bit fixed point format with 5 integer and 11 fractional bits but increased precision representations are used in some blocks to reduce error output. Additionally, a verification environment has also been designed and is capable of performing simulations, evaluating the design output by comparing it with results produced from performing the same operations with 64-bit floating point precision on a SystemVerilog testbench and measuring the encountered error. The results concerning the accuracy and the design output error margin are presented in this thesis report. The design went through Logic and Physical synthesis and successfully resulted in a functional netlist for every tested configuration. Timing, area and power measurements on the generated netlists of various configurations of the design show consistency and are reported in this report. / LSTM neurala nätverk har använts för taligenkänning, bildigenkänning och andra artificiella intelligensapplikationer i många år. De flesta applikationer utför LSTM-algoritmen och de nödvändiga beräkningarna i digitala moln. Offline lösningar inkluderar användningen av FPGA och GPU men de mest lovande lösningarna inkluderar ASIC-acceleratorer utformade för endast dettaändamål. Denna rapport presenterar en ASIC-design som kan utföra multipla iterationer av LSTM-algoritmen på en enkelriktad neural nätverksarkitetur utan peepholes. Den föreslagna designed ger aritmetrisk nivå-parallellismalternativ som block som är instansierat baserat på parametrar. Designens inre konstruktion implementerar pipelinerade, parallella, eller seriella lösningar beroende på vilket anternativ som är optimalt till alla fall. Konsekvenserna för dessa beslut diskuteras i detalj i rapporten. Designprocessen beskrivs i detalj och utvärderingen av designen presenteras också för att mäta noggrannheten och felmarginal i designutgången. Resultatet av arbetet från denna rapport är en fullständig syntetiserbar ASIC design som har implementerat ett LSTM-lager, ett fullständigt anslutet lager och ett Softmax-lager som kan utföra klassificering av data baserat på tränade viktmatriser och biasvektorer. Designen använder huvudsakligen 16bitars fast flytpunktsformat med 5 heltal och 11 fraktions bitar men ökade precisionsrepresentationer används i vissa block för att minska felmarginal. Till detta har även en verifieringsmiljö utformats som kan utföra simuleringar, utvärdera designresultatet genom att jämföra det med resultatet som produceras från att utföra samma operationer med 64-bitars flytpunktsprecision på en SystemVerilog testbänk och mäta uppstådda felmarginal. Resultaten avseende noggrannheten och designutgångens felmarginal presenteras i denna rapport.Designen gick genom Logisk och Fysisk syntes och framgångsrikt resulterade i en funktionell nätlista för varje testad konfiguration. Timing, area och effektmätningar på den genererade nätlistorna av olika konfigurationer av designen visar konsistens och rapporteras i denna rapport.
6

Model Predictive Control Used for Optimal Heating in Commercial Buildings

Rubin, Fredrik January 2021 (has links)
Model Predictive Control (MPC) is an optimization method used in a wide range of applications. However, in the housing sector its use is still limited. In this project, the possibilities of using an easily scalable MPC controller to optimize the heating of a building, is examined and evaluated. It is a combination of a Long Short Term Memory (LSTM) network for understanding the dynamics of the buildning in order to predict future indoor temperatures, and the probalistic technique Simulated Annealing (SA), used for solving the control problem. As an extension, predicted energy prices per hour are added, with the goal to lower the heating costs. The model is tested on a family house with eight rooms and centrally heated using gas. The results are promising, but ambiguous. The main reason for the uncertainties are the testing environment. / Model Predictive Control (MPC) är en optimeringsmetod som används inom många olika områden. Inom bostadssektorn är dock användningen fortfarande begränsad. I det här projektet undersöks möjligheten att använda en MPC kontroller för att optimera uppvärmningen av en byggnad, och om den enkelt kan appliceras på andra byggnader. Det är en kombination av ett long Short Term Memory (LSTM) nätverk för att förstå dynamiken av byggnaden med målet att förutse framtida inomhustemperaturer, och den probabilistiska metoden Simulated Annealing (SA) som används för att lösa kontrollproblemet. Ett tillägg till modellen är inkluderandet av energipriser för varje timme, där målet istället blir att minimera uppvärmningskostnaderna. Modellen testas på ett familjehus med åtta rum som är centralt uppvärmt genom gas. Resultaten är lovande, men tvetydiga. Huvudorsaken för osäkerheterna är testmiljön.
7

Anomaly Detection for Root Cause Analysis in System Logs using Long Short-Term Memory / Anomalidetektion för Grundorsaksanalys i Loggar från Mjukvara med hjälp av Long Short-Term Memory

von Hacht, Johan January 2021 (has links)
Many software systems are under test to ensure that they function as expected. Sometimes, a test can fail, and in that case, it is essential to understand the cause of the failure. However, as systems grow larger and become more complex, this task can become non-trivial and potentially take much time. Therefore, even partially, automating the process of root cause analysis can save time for the developers involved. This thesis investigates the use of a Long Short-Term Memory (LSTM) anomaly detector in system logs for root cause analysis. The implementation is evaluated in a quantitative and a qualitative experiment. The quantitative experiment evaluates the performance of the anomaly detector in terms of precision, recall, and F1 measure. Anomaly injection is used to measure these metrics since there are no labels in the data. Additionally, the LSTM is compared with a baseline model. The qualitative experiment evaluates how effective the anomaly detector could be for root cause analysis of the test failures. This was evaluated in interviews with an expert in the software system that produced the log data that the thesis uses. The results show that the LSTM anomaly detector achieved a higher F1 measure than the proposed baseline implementation thanks to its ability to detect unusual events and events happening out of order. The qualitative results indicate that the anomaly detector could be used for root cause analysis. In many of the evaluated test failures, the expert being interviewed could deduce the cause of the failure. Even if the detector did not find the exact issue, a particular part of the software might be highlighted, meaning that it produces many anomalous log messages. With this information, the expert could contact the people responsible for that part of the application for help. In conclusion, the anomaly detector automatically collects the necessary information for the expert to perform root cause analysis. As a result, it could save the expert time to perform this task. With further improvements, it could also be possible for non-experts to utilise the anomaly detector, reducing the need for an expert. / Många mjukvarusystem testas för att försäkra att de fungerar som de ska. Ibland kan ett test misslyckas och i detta fall är det viktigt att förstå varför det gick fel. Detta kan bli problematiskt när mjukvarusystemen växer och blir mer komplexa eftersom att denna uppgift kan bli icke trivial och ta mycket tid. Om man skulle kunna automatisera felsökningsprocessen skulle det kunna spara mycket tid för de invloverade utvecklarna. Denna rapport undersöker användningen av en Long Short-Term Memory (LSTM) anomalidetektor för grundorsaksanalys i loggar. Implementationen utvärderas genom en kvantitativ och kvalitativ undersökning. Den kvantitativa undersökningen utvärderar prestandan av anomalidetektorn med precision, recall och F1 mått. Artificiellt insatta anomalier används för att kunna beräkna dessa mått eftersom att det inte finns etiketter i den använda datan. Implementationen jämförs också med en annan simpel anomalidetektor. Den kvalitativa undersökning utvärderar hur användbar anomalidetektorn är för grundorsaksanalys för misslyckade tester. Detta utvärderades genom intervjuer med en expert inom mjukvaran som producerade datan som användes in denna rapport. Resultaten visar att LSTM anomalidetektorn lyckades nå ett högre F1 mått jämfört med den simpla modellen. Detta tack vare att den kunde upptäcka ovanliga loggmeddelanden och loggmeddelanden som skedde i fel ordning. De kvalitativa resultaten pekar på att anomalidetektorn kan användas för grundorsaksanalys för misslyckade tester. I många av de misslyckade tester som utvärderades kunde experten hitta anledningen till att felet misslyckades genom det som hittades av anomalidetektorn. Även om detektorn inte hittade den exakta orsaken till att testet misslyckades så kan den belysa en vissa del av mjukvaran. Detta betyder att just den delen av mjukvaran producerad många anomalier i loggarna. Med denna information kan experten kontakta andra personer som känner till den delen av mjukvaran bättre för hjälp. Anomalidetektorn automatiskt den information som är viktig för att experten ska kunna utföra grundorsaksanalys. Tack vare detta kan experten spendera mindre tid på denna uppgift. Med vissa förbättringar skulle det också kunna vara möjligt för mindre erfarna utvecklare att använda anomalidetektorn. Detta minskar behovet för en expert.
8

Empirisk Modellering av Trafikflöden : En spatio-temporal prediktiv modellering av trafikflöden i Stockholms stad med hjälp av neurala nätverk / Empirical Modeling of Traffic Flow : A spatio-temporal prediction model of the traffic flow in Stockholm city using neural networks

Björkqvist, Niclas, Evestam, Viktor January 2024 (has links)
A better understanding of the traffic flow in a city helps to smooth transport resulting in a better street environment, affecting not only road users and people in proximity. Good predictions of the flow of traffic helps to control and further develop the road network in order to avoid congestion and unneccessary time spent while traveling. This study investigates three different machine learning models with the purpose of predicting traffic flow on different road types inurban Stockholm using loop sensor data between 2013 and 2023. The models used was Long short term memory (LSTM), Temporal convolutional network (TCN) and a hybrid model of LSTM and TCN. The results from the hybrid model indicates a slightly better mean absolute error than TCN suggesting that a hybrid model might be advantagous when predicting traffic flow using loop sensor data. LSTM struggled to capture the complexity of the data and was unable to provide a proper prediction as a result. TCN produced a mean absolute error slightly bigger than the hybrid model and was to an extent able to capture the trends of the traffic flow, but struggled with capturing the scale of the traffic flow suggesting the need for further data preprocessing. Furthermore, this study suggests that the loop sensor data was able to act as a foundation for predicting the traffic flow using machine learning methods. However, it suggest that improvements to the data itself such as incorporating more related parameters might be advantageous to further improve traffic flow prediction.
9

A SENTIMENT BASED AUTOMATIC QUESTION-ANSWERING FRAMEWORK

Qiaofei Ye (6636317) 14 May 2019 (has links)
With the rapid growth and maturity of Question-Answering (QA) domain, non-factoid Question-Answering tasks are in high demand. However, existing Question-Answering systems are either fact-based, or highly keyword related and hard-coded. Moreover, if QA is to become more personable, sentiment of the question and answer should be taken into account. However, there is not much research done in the field of non-factoid Question-Answering systems based on sentiment analysis, that would enable a system to retrieve answers in a more emotionally intelligent way. This study investigates to what extent could prediction of the best answer be improved by adding an extended representation of sentiment information into non-factoid Question-Answering.
10

Analysis of Machine Learning Algorithms for Time Series Prediction

Naidoo, Kimendree 08 March 2022 (has links)
Due to the rapidly increasing prominence of Artificial Intelligence in the last decade and the advancements in technology such as processing power and data storage, there has been increased interest in applying machine learning algorithms to time series prediction problems. There are many machine learning algorithms that can be used for time series prediction problems but selecting an algorithm can be challenging due to algorithms not being suitable to all types of datasets. This research investigates and evaluates machine learning algorithms that can be used for time series prediction. Experiments were carried out using the Artificial Neural Network (ANN), Support Vector Regressor (SVR) and Long Short-Term Memory (LSTM) algorithms on eight datasets. An empirical analysis was carried out by applying each machine learning algorithm to the selected datasets. A critical comparison of the algorithm performance was carried out using the Mean Absolute Error (MAE), the Mean Squared Error (MSE), the Root Mean Squared Error (RMSE) and the Mean Absolute Scaled Error (MASE). The second experiment focused on evaluating the stability and robustness of the optimal models identified in the first experiment. The key dataset characteristics identified; were the dataset size, stationarity, trend and seasonality. It was found that the LSTM performed the best for majority of the datasets, due to the algorithm's ability to deal with sequential dependency. The performance of the ANN and SVR were similar for datasets with trend and seasonality, while the LSTM overall proved superior to the aforementioned algorithms. The LSTM outperformed the ANN and SVR due to its ability to handle temporal dependency. However, due to its stochastic nature, the LSTM and ANN algorithms can have poor stability and robustness. In this regard, the LSTM was found to be a more robust algorithm than the ANN and SVR.

Page generated in 0.0856 seconds