• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nutrient cycling in hybrid poplar stands in Saskatchewan : implications for long-term productivity

Steckler, Michael Kenneth 16 May 2007
Intensive management of short rotation hybrid poplar (HP) plantations on agriculture land has demonstrated good early yields and promise as an alternative crop for farmers selling fibre to the forest industry. However, multiple rotations of HP may impact the future productivity of plantations through nutrient removals. The objectives, therefore, of this study were to determine the nutrient stores and fluxes for two HP plantations with differing site quality, fertilizer applications and past land management practices and to construct a 20-year nutrient budget to examine impacts of harvesting short rotation HP on long-term productivity.<p>Heights and biomass were measured by harvesting above- and below-ground and separating biomass into tree components; measurement of atmospheric deposition, mineral weathering, litterfall, litter decomposition, and leaching for HP plantations on an Alfalfa (HPA) and Pasture (HPP) sites in 2004-05. The budget was developed by averaging fluxes over 2 years and scaling up to a 20-year rotation. <p>Unfertilized treatments in the HPA plantation showed greater tree growth than all other treatments. Fertilized and unfertilized treatments had greater biomass production and nutrient pools than treatments at the HPP plantation. The fertilizer treatments did not affect on biomass production and nutrient accumulation.<p>Nutrient additions to the HPA were greater than the HPP plantations for leaf litterfall and leaching. Nutrient resorption from senescing leaves was greater at the HPP plantation suggesting that nutrient pools were smaller and that trees responded by keeping nutrients in the biomass. Fertilization at both plantations increased nutrient flow for inputs and outputs in 2004-05. Water leachate and leaf litterfall showed increased nutrient contents in fertilized treatments at both plantations.<p>A high fertility plantation that used fertilizer and practiced whole-tree harvesting exported more nutrients (and fibre) than a plantation with marginal site quality practicing stem-only harvesting. Time to replenish nutrients from atmospheric deposition and mineral weathering would range from 6 to 50 years for Ca and N, respectively, suggesting that subsequent plantations would require fertilizers to replenish soil nutrient reserves.<p>While HP plantations in Saskatchewan can produce high yields, they require large nutrient inputs and are inefficient (sequester a large amount) in nutrient use. High site quality is important to obtain high yields but conservational techniques, such as stem-only harvesting, are important in maintaining site quality over the long-term.
2

Nutrient cycling in hybrid poplar stands in Saskatchewan : implications for long-term productivity

Steckler, Michael Kenneth 16 May 2007 (has links)
Intensive management of short rotation hybrid poplar (HP) plantations on agriculture land has demonstrated good early yields and promise as an alternative crop for farmers selling fibre to the forest industry. However, multiple rotations of HP may impact the future productivity of plantations through nutrient removals. The objectives, therefore, of this study were to determine the nutrient stores and fluxes for two HP plantations with differing site quality, fertilizer applications and past land management practices and to construct a 20-year nutrient budget to examine impacts of harvesting short rotation HP on long-term productivity.<p>Heights and biomass were measured by harvesting above- and below-ground and separating biomass into tree components; measurement of atmospheric deposition, mineral weathering, litterfall, litter decomposition, and leaching for HP plantations on an Alfalfa (HPA) and Pasture (HPP) sites in 2004-05. The budget was developed by averaging fluxes over 2 years and scaling up to a 20-year rotation. <p>Unfertilized treatments in the HPA plantation showed greater tree growth than all other treatments. Fertilized and unfertilized treatments had greater biomass production and nutrient pools than treatments at the HPP plantation. The fertilizer treatments did not affect on biomass production and nutrient accumulation.<p>Nutrient additions to the HPA were greater than the HPP plantations for leaf litterfall and leaching. Nutrient resorption from senescing leaves was greater at the HPP plantation suggesting that nutrient pools were smaller and that trees responded by keeping nutrients in the biomass. Fertilization at both plantations increased nutrient flow for inputs and outputs in 2004-05. Water leachate and leaf litterfall showed increased nutrient contents in fertilized treatments at both plantations.<p>A high fertility plantation that used fertilizer and practiced whole-tree harvesting exported more nutrients (and fibre) than a plantation with marginal site quality practicing stem-only harvesting. Time to replenish nutrients from atmospheric deposition and mineral weathering would range from 6 to 50 years for Ca and N, respectively, suggesting that subsequent plantations would require fertilizers to replenish soil nutrient reserves.<p>While HP plantations in Saskatchewan can produce high yields, they require large nutrient inputs and are inefficient (sequester a large amount) in nutrient use. High site quality is important to obtain high yields but conservational techniques, such as stem-only harvesting, are important in maintaining site quality over the long-term.
3

Loblolly Pine and Soil-Site Responses to Harvesting Disturbance and Site Preparation at Stand Closure

Eisenbies, Mark Hale 12 July 2004 (has links)
Intensively managed forests of the Southern United States are among the most important sources of wood fiber and timber in this country. There is a great deal of concern that disturbances associated with trafficking by heavy machinery might diminish long-term soil-site productivity. However, determining the effect of harvesting disturbance and silvicultural treatments on the long-term productivity of pine plantations is difficult because, in addition to harvesting effects, growth distributions are affected by changes in climate, silviculture, and genetics. The primary objectives of this study were to determine (1) whether logging disturbances under operationally realistic circumstances affect soil quality, hydrologic function, and loblolly pine (Pinus taeda L.) productivity on wet pine flats, and (2) whether intensive forest management practices mitigate disturbance effects if they exist. Three 20-ha loblolly pine plantations located on wet pine flats in South Carolina were subjected to combinations of wet- and dry-weather harvesting and mechanical site preparations. Changes in soil-site productivity after five years were evaluated using a new rank method. The key advantage of the rank change method is that it is largely independent of the confounding factors (e.g. genetics, silvicultural practices, and climate) that affect comparisons of tree growth and soil quality between growth cycles. After five years, loblolly pine site indexes (base age 25) ranged between 13 and 33 m, and production ranged between 0.5 and 95 Mg ha-1. Soil bulk densities increased from 1.15 to as high as 1.44 g cm-3 after harvesting; by age 7 years it had decreased to approximately 1.25 g cm-3. At the sub-stand scale (0.008 ha), visually assessed soil physical and harvesting residue disturbances had little influence on relative changes in soil-site productivity after five years. Factors that specifically reflect site drainage were the most influential on changes in productivity. At the operational scale (3.3 ha), there were no differences between wet- and dry- harvested sites as long as bedding was applied as a site treatment. These results indicate that when standard site preparation is employed, fertile, wet pine flats such as these are resilient in that they recover from severe, but operationally realistic, harvesting disturbances. / Ph. D.

Page generated in 0.1014 seconds