• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving the Timeliness of SCTP Message Transfers

Hurtig, Per January 2008 (has links)
<p>Due to the cheap and flexible framework that the underlying IP-technology of the internet provides, IP-networks are becoming popular in more and more contexts. For instance, telecommunication operators have started to replace the fixed legacy telephony networks with IP-networks. To support a smooth transition towards IP-networks, the Stream Control Transmission Protocol (SCTP) was standardized. SCTP is used to carry telephony signaling traffic, and solves a number of problems that would have followed from using the Transmission Control Protocol (TCP) in this context. However, the design of SCTP is still heavily influenced by TCP. In fact, many protocol mechansisms in SCTP are directly inherited from TCP. Unfortunately, many of these mechanisms are not adapted to the kind of traffic that SCTP is intended to transport: time critical message-based traffic, e.g. telephony signaling.In this thesis we examine, and adapt some of SCTP's mechanisms to more efficiently transport time critical message-based traffic. More specifically, we adapt SCTP's loss recovery and message bundling for timely message transfers. First, we propose and experimentally evaluate two loss recovery mechanisms: a packet-based Early Retransmit algorithm, and a modified retransmission timeout management algorithm. We show that these enhancements can reduce loss recovery times with at least 30-50%, in some scenarios. In addition, we adapt the message bundling of SCTP to better support timely message delivery. The proposed bundling algorithm can in some situations reduce the transfer time of a message with up to 70%.In addition to these proposals we have also indentified and reported mistakes in some of the most popular SCTP implementations. Furthermore, we have continously developed the network emulation software KauNet to support our experimental evaluations.</p>
2

Improving the Timeliness of SCTP Message Transfers

Hurtig, Per January 2008 (has links)
Due to the cheap and flexible framework that the underlying IP-technology of the internet provides, IP-networks are becoming popular in more and more contexts. For instance, telecommunication operators have started to replace the fixed legacy telephony networks with IP-networks. To support a smooth transition towards IP-networks, the Stream Control Transmission Protocol (SCTP) was standardized. SCTP is used to carry telephony signaling traffic, and solves a number of problems that would have followed from using the Transmission Control Protocol (TCP) in this context. However, the design of SCTP is still heavily influenced by TCP. In fact, many protocol mechansisms in SCTP are directly inherited from TCP. Unfortunately, many of these mechanisms are not adapted to the kind of traffic that SCTP is intended to transport: time critical message-based traffic, e.g. telephony signaling.In this thesis we examine, and adapt some of SCTP's mechanisms to more efficiently transport time critical message-based traffic. More specifically, we adapt SCTP's loss recovery and message bundling for timely message transfers. First, we propose and experimentally evaluate two loss recovery mechanisms: a packet-based Early Retransmit algorithm, and a modified retransmission timeout management algorithm. We show that these enhancements can reduce loss recovery times with at least 30-50%, in some scenarios. In addition, we adapt the message bundling of SCTP to better support timely message delivery. The proposed bundling algorithm can in some situations reduce the transfer time of a message with up to 70%.In addition to these proposals we have also indentified and reported mistakes in some of the most popular SCTP implementations. Furthermore, we have continously developed the network emulation software KauNet to support our experimental evaluations.
3

Transport-Layer Performance for Applications and Technologies of the Future Internet

Hurtig, Per January 2012 (has links)
To provide Internet applications with good performance, the transport protocol TCP is designed to optimize the throughput of data transfers. Today, however, more and more applications rely on low latency rather than throughput. Such applications can be referred to as data-limited and are not appropriately supported by TCP. Another emerging problem is associated with the use of novel networking techniques that provide infrastructure-less networking. To improve connectivity and performance in such environments, multi-path routing is often used. This form of routing can cause packets to be reordered, which in turn hurts TCP performance. To address timeliness issues for data-limited traffic, we propose and experimentally evaluate several transport protocol adaptations. For instance, we adapt the loss recovery mechanisms of both TCP and SCTP to perform faster loss detection for data-limited traffic, while preserving the standard behavior for regular traffic. Evaluations show that the proposed mechanisms are able to reduce loss recovery latency with 30-50%. We also suggest modifications to the TCP state caching mechanisms. The caching mechanisms are used to optimize new TCP connections based on the state of old ones, but do not work properly for data-limited flows. Additionally, we design a SCTP mechanism that reduces overhead by bundling several packets into one packet in a more timely fashion than the bundling normally used in SCTP. To address the problem of packet reordering we perform several experimental evaluations, using TCP and state of the art reordering mitigation techniques. Although the studied mitigation techniques are quite good in helping TCP to sustain its performance during pure packet reordering events, they do not help when other impairments like packet loss are present. / <p>Paper V was in manuscript form at the time of the defense.</p>

Page generated in 0.0869 seconds