41 |
Boundary layers in dense, low-temperature plasmasThornhill, Lindsey Dorough 12 1900 (has links)
No description available.
|
42 |
Design, analysis, and testing of a low pressure cryogenic valveGleaton, Anthony James. Luongo, Cesar A. January 2004 (has links)
Thesis (M.S.)--Florida State University, 2004. / Advisor: Dr. Cesar Luongo, Florida State University, College of Engineering, Dept. of Mechanical Engineering. Title and description from dissertation home page (viewed Dec. 16, 2004). Includes bibliographical references.
|
43 |
The heat capacity of silver oxide at low temperaturesGregor, Lawrence Vincent. January 1961 (has links)
Thesis--University of California, Berkeley, 1961. / "UC-4 Chemistry General" -t.p. "TID-4500 (16th Ed.)" -t.p. Includes bibliographical references (p. 98-99).
|
44 |
The effect of precipitation hardening in dilute aluminum alloys for cryogenic applicationsSaffari-Kermani, Ali-Akbar. January 1979 (has links)
Thesis (M.S.)--University of Wisconsin--Madison. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 95-98).
|
45 |
Ferromagnetic to Fermi liquid transition in MnSiPfleiderer, Christian January 1994 (has links)
No description available.
|
46 |
A study of the Infra-red spectra of some reactive speciesOgilvie, John Franklin January 1961 (has links)
Although there have been recorded many spectra of dispersions of reactive and unreactive molecules in inert matrices, there has been no real attempt to explain quantitatively the nature of the forces and interactions of these matrices that act on the molecular vibrations of the trapped species.
In the present study the infra-red spectra of formaldehyde and water in solid argon and nitrogen matrices and of solid formaldehyde are used as a basis for a discussion and analysis of the conditions that prevail in such matrices.
Isotope effects, molecular association, inter-molecular coupling, rotation, the effect of trapping in different lattice positions, and matrix-gas frequency shifts are considered in the Interpretation of the observed spectra. / Science, Faculty of / Chemistry, Department of / Graduate
|
47 |
Topics in electromagnetic fluctuations at low temperatures and in superconductivityFink, Hermann Josef January 1959 (has links)
I. CURRENT FLUCTUATIONS IN A SUPERCONDUCTING CIRCUIT CARRYING A CIRCULATING CURRENT - Persistent currents in superconducting lead are free from fluctuations to less than 1.1 x 10⁻⁹ of full shot noise at approximately 2.4 Mc/s. Superconducting currents are also unaffected by the surface condition of the metal to the same limit as stated above. II. A NEW ABSOLUTE NOISE THERMOMETER AT LOW TEMPERATURES - If three resistors, which are kept at different temperatures, are arranged in form of a π network and if two of the thermal noise voltages appearing across the if network are multiplied together and averaged with respect to time, then under certain conditions the correlation between those voltages can be made zero. This condition is used to calculate the temperature of one noise source provided all the resistance Values and the other temperatures are known. A noise thermometer of this kind was constructed which is capable of measuring temperatures below approximately 140°K. The boiling points of liquid oxygen and liquid nitrogen were determined absolutely within 0.2 percent using the ice-point as reference. Between 1.3°K and 4.2°K the thermometer had to be calibrated due to errors arising in the equipment and the measured temperatures were then accurate within ± 1 percent.
III. QUASI-PERSISTENT CURRENTS IN RINGS COMPOSED OF SUPERCONDUCTING AND NON-SUPERCONDUCTING REGIONS - A number of rings composed of a superconductor (Pb, In) apart from a small insert of normal metal (Cu) perpendicular to the current flow have been investigated between 1.30°K and 4.33°K for Pb-Cu and between 1.30°K and 3.20°K for In-Cu. It was found that for samples with good electrical contact the decay of the magnetic field due to the current is exponential and that the effective resistance increased compared with the bulk resistance of Cu by approximately 2.1 for the Pb-Cu rings and by 18.5 for the In-Cu rings. Two different thicknesses of the Cu inserts (0.0125 cm and 0.0053 cm) were used and it was found that the resistivity of the thin Cu insert increased with respect to the thick foil by 16% for the Pb-Cu system and by 36% for the In-Cu system. Part of this relative increase can be explained as a size effect due to electron scattering in the Cu insert. The effective resistance of the Pb-Cu rings shows a maximum at approximately 3.4°K. The resistance of the In-Cu samples decreases by about 10% between 3.2°K and 1.3°K. The resistivity of the Cu foil when measured separately was constant for the above temperature range. For samples with "poor" electrical contact (probably due to some copper oxide on the insert) two definite relaxation times were observed. For these samples the effective resistance was current and temperature dependent and it was decreasing for decreasing currents and decreasing temperatures. This can be explained in terms of a rectification effect of the two oxide layers on the insert. The decay of the magnetic field of the ring is consistent with the decay of a current in an L-R circuit. IV. THE DESTRUCTION OF SUPERCONDUCTIVITY IN TANTALUM WIRES BY A CURRENT - The transition from the superconducting to the normal state of various pre-stretched tantalum wires carrying current was investigated. When the resistance of the wire jumps discontinuously from the superconducting to the normal or intermediate state as a current is passed through it, then this current is defined as the critical current I(c). For temperatures T < (T(c)-5 millidegrees K) the resistance of the wire jumps directly from zero resistance to its normal value at the critical current, such that the total cross section of the wire goes effectively into the normal state. Between (T(c)-5 millidegrees K) and T(c) the resistance of the wire jumps at I(c) to any fraction of the normal resistance between approximately zero and one. For constant temperatures the resistance-current plots show a large hysteresis effect. The transition temperature, T(c), of the various samples is strongly dependent upon their normal resistivity at helium temperatures. If the wires with a small constant current (4.2 ma) flowing in them are cooled from above the transition temperature, the resistance decreases above T(c) and approaches zero at approximately T(c) where T(c) is defined by the extrapolation of the I(c)-T curve to I(c) = 0. If the wires are heated from below T(c) the same resistance-temperature curves are reproduced. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
48 |
Properties of matter at very low temperatures /Tseng, Tse-Pei January 1954 (has links)
No description available.
|
49 |
Cryopreservation of Nereis virens sars and Arenicola marina L. larvae : mechanisms and applications in aquacultureWang, Wen Bo January 1998 (has links)
No description available.
|
50 |
A transition-edge-sensor-based instrument for the measurement of individual He2* excimers in a superfluid 4He bath at 100 mKCarter, Faustin Wirkus 17 February 2016 (has links)
<p> This dissertation is an account of the first calorimetric detection of individual He*<sub>2</sub> excimers within a bath of superfluid <sup>4</sup>He. When superfluid helium is subject to ionizing radiation, diatomic He molecules are created in both the singlet and triplet states. The singlet He molecules decay within nanoseconds, but due to a forbidden spin-flip the triplet molecules have a relatively long lifetime of 13 seconds in superfluid He. When He*<sub> 2</sub> molecules decay, they emit a ~15 eV photon. Nearly all matter is opaque to these vacuum-UV photons, although they do propagate through liquid helium. The triplet state excimers propagate ballistically through the superfluid until they quench upon a surface; this process deposits a large amount of energy into the surface. The prospect of detecting both excimer states is the motivation for building a detector immersed directly in the superfluid bath.</p><p> The detector used in this work is a single superconducting titanium transition edge sensor (TES). The TES is mounted inside a hermetically sealed chamber at the baseplate of a dilution refrigerator. The chamber contains superfluid helium at 100 mK. Excimers are created during the relaxation of high-energy electrons, which are introduced into the superfluid bath either in situ via a sharp tungsten tip held above the field-emission voltage, or by using an external gamma-ray source to ionize He atoms. These excimers either propagate through the LHe bath and quench on a surface, or decay and emit vacuum-ultraviolet photons that can be collected by the detector.</p><p> This dissertation discusses the design, construction, and calibration of the TES-based excimer detecting instrument. It also presents the first spectra resulting from the direct detection of individual singlet and triplet helium excimers.</p>
|
Page generated in 0.0927 seconds