• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved approximation guarantees for lower-bounded facility location problem

Ahmadian, Sara January 2010 (has links)
We consider the lower-bounded facility location (LBFL) problem (, also known as load-balanced facility location), which is a generalization of uncapacitated facility location (UFL) problem where each open facility is required to serve a minimum number of clients. More formally, in the LBFL problem, we are given a set of clients Ɗ , a set of facilities Ƒ, a non-negative facility-opening cost f_i for each i ∈ Ƒ, a lower bound M, and a distance metric c(i,j) on the set Ɗ ∪ Ƒ, where c(i,j) denotes the cost of assigning client j to facility i. A feasible solution S specifies the set of open facilities F_S ⊆ Ƒ and the assignment of each client j to an open facility i(j) such that each open facility serves at least M clients. Our goal is to find feasible solution S that minimizes ∑_{i ∈ F_S} f_i + ∑_j c(i,j). The current best approximation ratio for LBFL is 550. We substantially advance the state-of-the-art for LBFL by devising an approximation algorithm for LBFL that achieves a significantly-improved approximation guarantee of 83.
2

Improved approximation guarantees for lower-bounded facility location problem

Ahmadian, Sara January 2010 (has links)
We consider the lower-bounded facility location (LBFL) problem (, also known as load-balanced facility location), which is a generalization of uncapacitated facility location (UFL) problem where each open facility is required to serve a minimum number of clients. More formally, in the LBFL problem, we are given a set of clients Ɗ , a set of facilities Ƒ, a non-negative facility-opening cost f_i for each i ∈ Ƒ, a lower bound M, and a distance metric c(i,j) on the set Ɗ ∪ Ƒ, where c(i,j) denotes the cost of assigning client j to facility i. A feasible solution S specifies the set of open facilities F_S ⊆ Ƒ and the assignment of each client j to an open facility i(j) such that each open facility serves at least M clients. Our goal is to find feasible solution S that minimizes ∑_{i ∈ F_S} f_i + ∑_j c(i,j). The current best approximation ratio for LBFL is 550. We substantially advance the state-of-the-art for LBFL by devising an approximation algorithm for LBFL that achieves a significantly-improved approximation guarantee of 83.

Page generated in 0.1474 seconds