• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 338
  • 241
  • 175
  • 28
  • 15
  • 14
  • 14
  • 13
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1042
  • 183
  • 116
  • 113
  • 102
  • 96
  • 92
  • 84
  • 72
  • 70
  • 63
  • 63
  • 61
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Avaliação do quartzo como dosímetro pessoal baseado na luminescência opticamente estimulada / Evaluation of the quartz as personal dosimeter based on optically stimulated luminescence

Mineli, Thays Desirèe, 1985- 27 August 2018 (has links)
Orientadores: Eduardo Tavares Costa, André Oliveira Sawakuchi / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-27T00:20:49Z (GMT). No. of bitstreams: 1 Mineli_ThaysDesiree_M.pdf: 1544477 bytes, checksum: 80869854299a120a6e91842425c1e644 (MD5) Previous issue date: 2015 / Resumo: O uso de radiação ionizante é cada vez mais intenso, seja na indústria seja na área médica. Os efeitos nocivos da radiação ionizante exigem medidas de segurança na sua utilização e um dos meios mais comuns para proteção da saúde do operador de equipamentos que usam esta radiação é o controle da dose que este pode receber em determinado período de tempo. Para tal controle, são normalmente utilizados dosímetros pessoais. Estudos sobre datação de sedimentos costeiros e fluviais do Brasil têm encontrado tipos específicos de quartzo com excelentes características dosimétricas. Com o objetivo de analisar as propriedades dosimétricas de amostras de quartzo de elevada sensibilidade de luminescência e avaliar a sua possível utilização na dosimetria pessoal, foram feitos testes comparativos com amostra do principal e mais utilizado dosímetro pessoal do tipo OSL (Optically Stimulated Luminescence), o Al2O3:C. Este trabalho apresenta as características de luminescência de amostras de quartzo. Essas características foram determinadas por testes de recuperação de dose conhecida (dose recovery) por meio de protocolo de alíquota única (Single-Aliquot Regenerative ¿ SAR) em amostras irradiadas por fonte de radiação beta. Foram realizados testes de sensibilidade e de estabilidade do sinal OSL e testes com radiação gama. Os resultados mostraram que as amostras de quartzo estudadas foram capazes de recuperar com exatidão doses de 50 mGy a 50Gy. Estimou-se que as amostras de quartzo saturam em doses (114-175 Gy) superiores à dose de saturação da amostra de Al2O3:C (35 Gy). A dose mínima capaz de ser medida pelas amostras de quartzo variou de 0,2 mGy (para radiação gama) a aproximadamente 20 mGy (para radiação beta). As amostras de quartzo não apresentaram fading do sinal OSL. O sinal OSL ultravioleta da amostra de Al2O3:C cresceu com o tempo. A amostra de Al2O3:C apresentou maior sensibilidade em comparação às amostras de quartzo no teste com radiação beta. A sensibilidade da amostra de quartzo TE65B no teste com radiação gama foi superior à sensibilidade da amostra Al2O3:C. Estes resultados indicam que as amostras de quartzo estudadas têm potencial como material para dosímetros e incentivam estudos mais aprofundados para avaliar o uso destes tipos de quartzo como elementos sensores em dosímetros pessoais / Abstract: The use of ionizing radiation is becoming more intense, whether in industry or in the medical field. The harmful effects of ionizing radiation require safety measures in its use. One of the most common ways to protect the health of the operator of ionizing radiation equipment is the dose control that he/she can receive in a given time period. Personal dosimeters are used for this purpose. Studies on dating of coastal and fluvial sediments in Brazil have found quartz types with very high luminescence signal and excellent dosimetric characteristics. In order to analyze the dosimetric properties of very bright Brazilian quartz samples and evaluate their use in personal dosimetry, comparative tests with the most used personal OSL (Optically Stimulated Luminescence) dosimeter, Al2O3:C, were made. This work presents the luminescence characteristics of quartz samples. These characteristics were determined by dose recovery tests using a Single-Aliquot Regenerative dose protocol (SAR) in samples irradiated by beta radiation. Sensitivity and stability tests and gamma radiation tests were made. The results have shown that the studied quartz samples were able to recover at least a dose range from 50 mGy to 50 Gy. It was estimated that the quartz samples saturate in doses (114-175 Gy) above the saturation dose of Al2O3:C sample (35 Gy). The minimum dose capable of being measured by the quartz samples ranged from 0.2 mGy (for gamma rays) to about 20 mGy (for beta radiation). The quartz samples showed no fading of the OSL signal. The ultraviolet OSL signal of Al2O3:C sample increased with time. The Al2O3:C sample showed higher sensitivity compared to quartz samples in beta radiation test. However, the sensitivity of TE65B quartz sample for the gamma radiation test was higher than the sensitivity of the Al2O3:C sample. These results indicate that the studied quartz samples have potential as dosimeter material and encourage further studies to evaluate the use of this type of quartz as sensor element in personal dosimeters / Mestrado / Engenharia Biomedica / Mestra em Engenharia Elétrica
342

Études Structurales et Photophysiques de Polymères de Coordination de Thiolates de Métaux Monétaires / Structural and photophysical studies of coordination polymers of coinage metals thiolates

Veselska, Oleksandra 17 October 2019 (has links)
Les polymères de coordination (PCs) à base de thiolates de métaux monétaires sont bien connus pour leurs propriétés luminescentes. Cependant, leurs structures sont sous-explorées. Dans cette thèse, nous présentons une étude pionnière visant la compréhension de la formation de la structure et de la corrélation ‘structure-propriétés’ des PCs homoleptiques neutres, [M(SR)]n, M = Cu(I), Ag(I), Au(I). Les composés avec les dérivés du thiophénolate étudiés dans ce travail, illustrent comment l'utilisation de certains ligands organiques fonctionnalisés conduit à la formation de réseaux 2D étendus ou de colonnes 1D par l'addition d'un encombrement stérique. De plus, la première étude structurelle comparative des PCs thiolées amorphes a été réalisée par analyse PDF. Les études photophysiques ont montré la diversité des propriétés luminescentes des PCs à base de thiolates de métaux monétaires. Des pics d'émission doubles ou multiples, un rendement quantique élevé, des émetteurs orange à proche infrarouge, des variations significatives de durée de vie en fonction de la température... toutes ces propriétés intrinsèques révèlent le potentiel élevé de ces composés pour diverses applications optiques / The coordination polymers (CPs) based on thiolates of coinage metals are well known for their luminescence properties. However, their structures stayed underexplored. In the thesis we present a pioneering study targeting the understanding of the structure formation and the ‘structure-properties’ correlation for neutral homoleptic CPs, [M(SR)]n, M = Cu(I), Ag(I), Au(I). The compounds with thiophenolate derivatives studied in the work, illustrate how the use of some functionalized organic ligands leads to the formation of extended 2D networks or 1D columns by addition of some steric hindrance. The first comparative structural study of amorphous thiolated CPs was performed by PDF analysis. The photophysical studies showed the diversity of luminescent properties of the CPs based on thiolates of coinage metals. Double or multiple emission peaks, high quantum yield of orange-toinfrared emitters, significant lifetime variation with temperature… all of these intrinsic properties reveal the high potential of these compounds for diverse optical applications
343

Studium polovodičů metodami časově rozlišené laserové spektroskopie: Luminiscenční spektroskopie nanokrystalického diamantu / Study of semiconductors by methods of laser spectroscopy

Dzurňák, Branislav January 2012 (has links)
Title: Study of semiconductors by methods of time resolved laser spectroscopy: Luminescence spectroscopy of nanocrystalline diamond Author: Branislav Dzurňák Department: Department of Chemical Physics and Optics Supervisor: doc. RNDr. František Trojánek, Ph.D. Abstract: The PhD thesis is focused on optical properties of nanocrystalline diamond prepared by chemical vapour deposition method. Photoluminescence of nanocrystalline diamond samples and effects of ambient temperature, pressure, pH and UV irradiation on it are studied by laser spectroscopy. Results suggest the keyrole of water and air adsorbates which affect the energy states in the sub-bandgap region of diamond. Photoluminescence decay of samples of different surface termination and structure and its dependency on ambient pressure and temperature is studied by methods of ultrafast (picosecond and nanosecond scale) laser spectroscopy. Results are analysed by power-law decay function which fits well the luminescence decay curves and also describes the dynamics of charge carriers in states localised within the bandgap. The model of interaction of nanocrystalline diamond with air adsorbates is proposed. Non-linear optical properties of nanocrystalline diamond are also studied, namely the generation of second and third harmonic frequency. The thesis...
344

Laserová spektroskopie polovodičových kvantových bodů / Laser spectroscopy of semiconductor quantum dots

Pokorný, Martin January 2012 (has links)
This work is focused on examining photoluminescent properties of InAs quantum dots (QDs) on GaAs substrate covered by GaAs1-xSbx strain reducing capping layer (SRL) prepared by Stranski-Krastanow method. We measured luminescence decay time of two samples with different concentration of Sb in this layer. We investigated the influence of temperature, intensity and wavelength of the excitation pulse on the luminescent decay time. We also compared the properties of the samples after excitation by 760 nm pulse and 850 nm pulse - the former one is energetically above the substrate band gap; in the second case we excited only the QDs and the wetting layer (WL). We consequently derived recombination and relaxation processes occurring inside InAs QDs and also the transport of charge carriers from the substrate and the WL into QDs. One part of this diploma thesis was to learn about the methods of measuring ultrafast photoluminescence and build the experimental set-up.
345

Engineering of Lead-Free Materials for Light-Emitting Application: Structural and Photophysical Studies

Almutlaq, Jawaher 27 October 2020 (has links)
Finding luminescent materials with narrow-band emissions, high stability, and high photoluminescence quantum yield (PLQY), yet relatively fast radiative decay rates, has been an outstanding research challenge. This thesis aims to develop different luminescent materials and examine their structural and optical properties for light-emitting applications. The first part of this thesis covers the controversy regarding the origin of emission in zerodimensional perovskites (0D), Cs4PbBr6 and Cs4PbI6, through a comparative analysis between 0D and three-dimensional (3D) perovskites. A series of optical studies excluded the 3D phases as the origin of emission in these materials. In parallel, the results from the DFT proposed the defects as a possible origin of emission. The second part of the thesis addresses the shortcoming of lead-based perovskites in terms of toxicity and stability, motivated by the high demand for sustainable materials with analogous electrical and structural properties. Thus, a series of solid-state Zn-based and Mn-based ternary compounds were investigated with and without doping. The compounds' photoluminescence peaks were between 520 nm – 525 nm, with PLQY between 34% -60%. Finally, CsMnBr3 NCs were synthesized revealing an intense red PL peak centered at 650 nm and a PLQY as high as 54% along with a remarkable excitation spectrum and surprisingly short lifetimes. The single crystals of this composition were also reported with a PL peak at 640 nm and a relatively high PLQY of 6.7% under the excitation at 360 nm. Further, a combination of structural and optical analysis attributed the green and red luminescence to the tetrahedral and octahedral environment of Mn2+, respectively. These materials represent a milestone towards lead-free luminescent materials with interesting optical properties. This dissertation aims at engineering different materials to address critical aspects in the field including stability and good luminescence properties while simultaneously examining the photophysics and mechanisms of the corresponding properties. This work paves the way for finding sustainable light-emitting materials for the next generation of light-emitting applications.
346

Red to Near-Infrared Luminescent Materials Activated by Transition Metals for in vivo Imaging and Telecommunication Application / バイオイメージングまたは光通信応用を目指した遷移金属賦活赤色・近赤外発光材料に関する研究

Zhuang, Yixi 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第18361号 / 人博第674号 / 新制||人||162(附属図書館) / 25||人博||674(吉田南総合図書館) / 31219 / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 田部 勢津久, 教授 加藤 立久, 教授 杉山 雅人 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
347

Optical and photo-electric studies on quantum cutting and persistent luminescent phosphors doped with rare-earth and transition-metal ions / 希土類または遷移金属イオンを添加した量子切断および残光蛍光体における光物性および光電流特性に関する研究

Katayama, Yumiko 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第18380号 / 人博第693号 / 新制||人||166(附属図書館) / 25||人博||693(吉田南総合図書館) / 31238 / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 田部 勢津久, 教授 加藤 立久, 教授 杉山 雅人, 教授 森本 芳則, 教授 山本 行男 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
348

Nanostructures for Donor-Acceptor Pair Luminescence

Chen, Feng January 2008 (has links)
Commercial success had been achieved with electroluminescent phosphor powders, particularly zinc sulfide activated with copper. The applications of AC Powder EL (ACPEL) are mainly limited to backlighting and lamp applications that require low brightness. This includes low illumination environments, such as nightlights and backlighting for LCDs and keypads in portable electronics and home electronics. By using nanowires as nanoelectrodes, a novel and self-supported nanostructured powder EL device has been developed in this thesis. The novel structure contains a single layer of ZnS:Cu powder phosphor which is embedded in a polymer matrix with one surface exposed. A dilute layer of conductive nanowires directly contacts the phosphor layer and works as rear electrodes. A highly intensified electric field can be induced in the phosphor region by the metal nanowires if a specific voltage is applied to the device. Simulations of the electric field by using commercial software show that the localized electric field can be at least one order of magnitude higher than the average field depending on the dimensions of the nanowires. As a result, electrons can be injected into the phosphor lattice by high-field-assisted tunneling, hence inducing electron avalanching. The electrons finally are trapped at the donors. When the external field is reversed, the electrons recombine with the holes that are previously injected by the same process and trapped at the acceptors. Therefore, visible light is produced by the recombination of the electron-hole pairs through the donor-acceptor pairs. The indium nanowires, with diameters of 300 nm and lengths of several microns, have been fabricated by using anodic aluminum oxide (AAO) templates which are known as self-organized porous structures formed by anodization of aluminum in an appropriate acid solution. A hydraulic pressure injection method has been applied to inject molten indium metal into the nanopores of the AAO template and form nanowires. By dissolution of the template, a large number of free indium nanowires is obtained. The nanowires are transferred onto a ZnS-embedded substrate by a wet-coating method. Finally, the entire device is completed by deposition of Au rectangular electrodes on the top of the indium nanowires. The indium nanowires have been characterized by using SEM and XRD. The tests of the dependence of luminance on voltage at various frequencies for a nanowire contact EL device sample are performed. A peak luminance of 25 cd/m2 has been achieved for the device driven at frequency of 8.2 kHz and a voltage of 425 V. The EL performance of the nanowire contact EL device is not as good as traditional powder EL devices so far, however, the novel structures have the potential for a lower operating voltage with simultaneous long lifetime and high luminance to overcome limitations of traditional powder EL. / Thesis / Doctor of Philosophy (PhD)
349

Silicon-sensitized Erbium Excitation In Silicon-rich Silica For Integrated Photonics

Savchyn, Oleksandr 01 January 2010 (has links)
It is widely accepted that the continued increase of processor performance requires at least partial replacement of electronic interconnects with their photonic counterparts. The implementation of optical interconnects requires the realization of a silicon-based light source, which is challenging task due to the low emission efficiency of silicon. One of the main approaches to address this challenge is the use of doping of silicon based matrices with optical centers, including erbium ions. Erbium ions incorporated in various hosts assume the trivalent state (Er3+) and demonstrate a transition at 1.54 μm, coinciding with optical transmission windows in both silicon and silica. Due to the low absorption cross-section and discrete energy levels of the Er3+ ion, indirect excitation is necessary. In late 90s it was demonstrated that the incorporation of excess silicon in erbium-doped silica results in strong erbium sensitization, leading to an increase of the effective absorption cross-section by orders of magnitude. The sensitization was considered to occur via silicon nanocrystals that formed at high annealing temperatures. While a large increase of the absorption cross-section was demonstrated, the incorporation of Si nanocrystals was found to result in a low concentration of excited erbium, as well as silicon related free-carrier absorption. The focus of this dissertation is the investigation of the nature of the sensitization mechanism of erbium in silicon-rich silica. The results presented in the dissertation demonstrate that erbium in silicon-rich silica is predominantly excited by silicon-excess-related luminescence centers, as opposed to the commonly considered silicon nanocrystals. This is a remarkable conclusion that changes the view on the exact origin of erbium sensitization, and that resolves several technical challenges that exist for nanocrystal-based sensitization. The work shows that the density of indirectly excited erbium ions is significantly larger in samples without silicon iii nanocrystals (annealed at T < 1000°C) as opposed to samples with silicon nanocrystals (annealed at T > 1000°C). The density of indirectly excited erbium ions, defining the maximum achievable gain, was demonstrated to be approximately excitation wavelength independent, while the effective erbium absorption cross-section was shown to significantly depend on the excitation wavelength. The excitation mechanism of erbium by luminescence centers was shown to be fast ( < 30 ns) and capable of erbium sensitization to different energy levels. This multilevel nature of erbium excitation was demonstrated to result in two different mechanisms of the excitation of the first excited state of erbium: fast ( < 30 ns) direct excitation by the luminescence centers, and slow ( > 2.3 μs) excitation due to the relaxation of erbium ions excited into higher energy levels to the first excited state. Based on photoluminescence studies conducted in the temperature range 15 - 300K it was shown that the relaxation efficiency of erbium from the second excited state to the first excited state (responsible for the slow excitation mechanism) is temperature independent and approaches unity. The relative stability of the optical properties demonstrated in the temperature range 20 - 200°C, implies that relatively stable optical gain can be achieved under realistic on-chip operating conditions. The optimum Si excess concentration corresponding to the highest density of sensitized Er3+ ions is shown to be relatively insensitive to the presence of Si nanocrystals and is ~ 14.5 at.% and ~ 11.5 at.% for samples without and with Si nanocrystals respectively. The presented results and conclusions have significant implications for silicon photonics and the industrial application of Er doped SiO2. The work shows that in order to sensitize erbium ions in silicon-rich silica there is no need for the presence of silicon nanocrystals, and consequently lower fabrication temperatures can be used. More importantly, the results strongly iv suggest that higher gain values can be acquired in samples annealed at lower temperature (without silicon nanocrystals) as compared to samples annealed at high temperatures (with silicon nanocrystals). In addition, the maximum gain is predicted to be relatively independent of excitation wavelength, significantly relaxing the requirements on the pump source. Based on the experimental results it is predicted that relatively stable performance of erbium-doped siliconrich silica is possible up to typical processor operating temperatures of ~ 80 - 90°C making it a viable material for on-chip devices. The results suggest that low temperature annealed erbiumdoped silicon-rich silica is a preferable material for on-chip photonic devices as compared with its high temperature annealed counterpart.
350

Correlating Microstructural Development And Failure Mechanisms To Photo Stimulated Luminescence Spectroscopy And Electrochemical Impedance Spectroscopy In Thermal Barrier Coatings

Jayaraj, Balaji 01 January 2011 (has links)
Thermal barrier coatings (TBCs) are widely used for thermal protection of hot section components in turbines for propulsion and power generation. Applications of TBCs based on a clearer understanding of failure mechanisms can help increase the performance and life-cycle cost of advanced gas turbine engines. Development and refinement of robust nondestructive evaluation techniques can also enhance the reliability, availability and maintainability of hot section components in gas turbines engines. In this work, degradation of TBCs was non-destructively examined by photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) as a function of furnace thermal cycling carried out in air with 10-minute heat-up, 0.67, 9.6 and 49.6 - hour dwell duration at 1121°C (2050°F), and 10-minute forced-air quench. TBCs examined in this study consisted of either electron beam physical vapor deposited and air plasma sprayed yttria-stabilized zirconia (YSZ) on a variety of bond coat / superalloy substrates including bond coats of NiCoCrAlY and (Ni,Pt)Al, and superalloys of CMSX-4, Rene‟N5, Haynes 230 and MAR-M-509. Detailed microstructural characterization by scanning electron microscopy and energy dispersive spectroscopy was carried out to document the degradation and failure characteristics of TBC failure, and correlate results of PSLS and EIS. Mechanisms of microstructural damage initiation and progression varied as a function of TBC architecture and thermal cycling dwell time, and included undulation of the interface between the thermally grown oxide (TGO) and bond coats, internal oxidation of the bond coats, and formation of Ni/Co-rich TGO. These microstructural observations were correlated to the evolution in compressive residual stress in the TGO scale determined by PSLS shift. Correlations iv include stress-relief and corresponding luminescence shift towards stress-free luminescence (i.e. = 14402 cm-1 and  = 14432 cm-1 ) associated with subcritical cracking of the TGO scale and stress-relaxation associated with gradual shift in the luminescence towards stress-free luminescence (i.e.  = 14402 cm-1 and  =14432 cm-1 ) is related to the undulation of TGO/bondcoat interface (e.g., rumpling and ratcheting). Microstructural changes in TBCs such as YSZ sintering, TGO growth, and subcritical damages within the YSZ and TGO scale were also correlated to the changes in electrochemical resistance and capacitance of the YSZ and TGO, respectively. With thermal exposure the YSZ/TGO resistance and capacitance increased and decreased as result of sintering and TGO growth. With progressive thermal cycling damages in the TGO was related to the TGO capacitance showing a continuous increase and at failure TGO capacitance abruptly increased with the exposure of bondcoat. Further correlations among the microstructural development, PSLS and EIS are documented and discussed, particularly as a function of dwell time used during furnace thermal cycling test, with due respect for changes in failure characteristics and mechanisms for various types of TBCs

Page generated in 0.0747 seconds