• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Star Formation and Galaxy Evolution in Different Environments, from the Field to Massive Clusters

Tyler, Krystal D. January 2012 (has links)
This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass--SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray under luminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.
2

MOLECULAR GAS PROPERTIES IN LOCAL LUMINOUS INFRARED GALAXIES

Sliwa, Kazimierz 11 1900 (has links)
In this thesis, I analyze the physical conditions such as temperature, volume density and column density of the molecular gas in four Luminous Infrared Galaxies (LIRGs): Arp 55, NGC 1614, VV 114 and NGC 2623. LIRGs are systems where two gas-rich galaxies are in the process of merging. The goal of my thesis is to look for trends in the molecular gas properties during the merger process. I use several observations of transitions of carbon monoxide (12CO) and its isotopologue 13CO from the Submillimeter Array, Combined Array for Research in Millimeter-wave Astronomy and Atacama Large Millimeter/submillimeter Array. The high-resolution observations allow me to analyze the molecular gas at several positions inside a single galaxy. The observations are fitted to models obtained from a radiative transfer code using a Bayesian likelihood method. I find that advanced mergers such as NGC 2623 and VV 114 have warmer (≥40 K), less dense (≤ 10^3 cm^−3) molecular gas than early/intermediate stage mergers such as Arp 55 and NGC 1614. I suggest that there are mechanisms such as stellar winds, supernovae and AGN activity that dissipate the molecular gas and thus lower the density and warm the gas as the merger progresses. The molecular gas pressure of the advanced mergers is found to be lower by nearly an order of magnitude when compared to the early/intermediate stage mergers. I also find that the [12CO]/[13CO] abundance ratio in NGC 1614, VV 114 and NGC 2623 is unusually high (> 100) when compared to the interstellar medium value near the center of the Milky Way (∼ 30). Interestingly, Arp 55 does not conform to this trend with a [12CO]/[13CO] value of ∼ 30, similar to the Milky Way center. I suggest that nucleosynthesis may play a big role in enhancing the abundance ratio and/or the molecular gas from the outer radii of Arp 55 has not reached the central inner regions to drive the abundance ratio up. Nevertheless, Arp 55 is in an interesting merger stage. Finally, I measured the CO luminosity to molecular gas mass conversion factor, alpha_{CO}, across the sample in search of the transition stage from a Galactic-like alpha_{CO} to the 4-5 times lower value found in LIRGs. iii The four sources all have measured alpha_{CO} values that are consistent with the LIRG value of 0.8 M_{sol} (K km s^−1 pc^2)^−1. I suggest that we look at an even earlier merger stage such as Arp 240 to find the point of transition. With the golden age of submillimeter astronomy upon us, this is just the beginning of furthering our knowledge of the merger process and what happens to the molecular gas, the fuel for all star formation. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0651 seconds