• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High aspect ratio microstructure coupler

Schaffer, Melissa Dawn 14 March 2011
<p>Couplers are one of the most frequently used passive devices in microwave circuitry. The main function of a coupler is to divide (or combine) a radio frequency signal into (from) two separate signals by a specific ratio and phase difference. With the need for smaller electronic devices, a reduction in the area of a distributed coupler would prove to be valuable. The purpose of this research is to develop, simulate, fabricate and test high aspect ratio microstructure couplers that are smaller in area than existing distributed couplers, and have comparable or better performance. One method used to reduce the area of a distributed coupler is to replace single or multiple transmission lines with lumped element equivalent circuits. One category of lumped elements that has not been extensively implemented is high aspect ratio lumped elements. High aspect ratio lumped elements fabricated with deep X-ray lithography are able to take advantage of using the vertical dimension, and reduce their planar area. In this thesis high aspect ratio lumped elements are used in the design of 3-dB microstructure couplers that show significant area reduction compared to equivalent distributed couplers.</p> <p>The designs of the microstructure couplers were based on the lumped element equivalent circuits of a 3-dB branch-line and a 3-dB rat-race distributed coupler. Simulations were performed to determine the lumped element values that would provide the largest 3-dB bandwidth while still maintaining close to ideal coupling and through values, return loss bandwidth, isolation bandwidth, and phase. These lumped element values were then implemented in the microstructure coupler designs as high aspect ratio microstructure lumped elements. 3-D electromagnetic simulations were performed which verified that the structures behaved electrically as couplers. The microstructure couplers were designed to be 220 &#x00B5;m tall nickel structures with capacitance gap widths of 6 µm.</p> <p>Fabrication of the microstructure couplers using deep X-ray lithography was performed by the microfabrication group at IMT/KIT in Karlsruhe, Germany. Before testing, detailed visual inspection and the etching of the structures was performed at the Canadian Light Source.</p> <p>A total of five microstructure couplers were tested. Four of the tested couplers were based on the 3-dB branch-line coupler, and the fifth coupler was based on the 3-dB rat-race coupler. The microstructure branch-line design that had the best overall results was fabricated on quartz glass substrate and had an operation frequency of 5.3 GHz. The 3-dB bandwidth of the coupler was measured to be better than 75.5% and extrapolated to be 95.0%. At the centre frequency the through and coupled values were -4.32 dB and -4.44 dB. The phase difference between the couplers output ports was designed to be 90.0° and was measured to be 95.8°. The ±5° phase bandwidth was measured to be 12.7% and the isolation bandwidth was 28.8%. The measured results from the other couplers were comparable to simulation results.</p> <p>The main advantage of the microstructure coupler designs over existing distributed couplers is that the microstructure couplers show a significant area reduction. The branch-line microstructure designs were at least 85% smaller in area than their distributed equivalent on quartz glass. The rat-race microstructure design showed an area reduction of 90% when compared to its distributed equivalent on quartz glass.</p>
2

High aspect ratio microstructure coupler

Schaffer, Melissa Dawn 14 March 2011 (has links)
<p>Couplers are one of the most frequently used passive devices in microwave circuitry. The main function of a coupler is to divide (or combine) a radio frequency signal into (from) two separate signals by a specific ratio and phase difference. With the need for smaller electronic devices, a reduction in the area of a distributed coupler would prove to be valuable. The purpose of this research is to develop, simulate, fabricate and test high aspect ratio microstructure couplers that are smaller in area than existing distributed couplers, and have comparable or better performance. One method used to reduce the area of a distributed coupler is to replace single or multiple transmission lines with lumped element equivalent circuits. One category of lumped elements that has not been extensively implemented is high aspect ratio lumped elements. High aspect ratio lumped elements fabricated with deep X-ray lithography are able to take advantage of using the vertical dimension, and reduce their planar area. In this thesis high aspect ratio lumped elements are used in the design of 3-dB microstructure couplers that show significant area reduction compared to equivalent distributed couplers.</p> <p>The designs of the microstructure couplers were based on the lumped element equivalent circuits of a 3-dB branch-line and a 3-dB rat-race distributed coupler. Simulations were performed to determine the lumped element values that would provide the largest 3-dB bandwidth while still maintaining close to ideal coupling and through values, return loss bandwidth, isolation bandwidth, and phase. These lumped element values were then implemented in the microstructure coupler designs as high aspect ratio microstructure lumped elements. 3-D electromagnetic simulations were performed which verified that the structures behaved electrically as couplers. The microstructure couplers were designed to be 220 &#x00B5;m tall nickel structures with capacitance gap widths of 6 µm.</p> <p>Fabrication of the microstructure couplers using deep X-ray lithography was performed by the microfabrication group at IMT/KIT in Karlsruhe, Germany. Before testing, detailed visual inspection and the etching of the structures was performed at the Canadian Light Source.</p> <p>A total of five microstructure couplers were tested. Four of the tested couplers were based on the 3-dB branch-line coupler, and the fifth coupler was based on the 3-dB rat-race coupler. The microstructure branch-line design that had the best overall results was fabricated on quartz glass substrate and had an operation frequency of 5.3 GHz. The 3-dB bandwidth of the coupler was measured to be better than 75.5% and extrapolated to be 95.0%. At the centre frequency the through and coupled values were -4.32 dB and -4.44 dB. The phase difference between the couplers output ports was designed to be 90.0° and was measured to be 95.8°. The ±5° phase bandwidth was measured to be 12.7% and the isolation bandwidth was 28.8%. The measured results from the other couplers were comparable to simulation results.</p> <p>The main advantage of the microstructure coupler designs over existing distributed couplers is that the microstructure couplers show a significant area reduction. The branch-line microstructure designs were at least 85% smaller in area than their distributed equivalent on quartz glass. The rat-race microstructure design showed an area reduction of 90% when compared to its distributed equivalent on quartz glass.</p>
3

Development Of Mems Technology Based Microwave And Millimeter-wave Components

Cetintepe, Cagri 01 February 2010 (has links) (PDF)
This thesis presents development of microwave lumped elements for a specific surface-micromachining based technology, a self-contained mechanical characterization of fixed-fixed type beams and realization of a shunt, capacitive-contact RF MEMS switch for millimeter-wave applications. Interdigital capacitor, planar spiral inductor and microstrip patch lumped elements developed in this thesis are tailored for a surface-micromachining technology incorporating a single metallization layer, which allows an easy and low-cost fabrication process while permitting mass production. Utilizing these elements, a bandpass filter is fabricated monolithically with success, which exhibits a measured in-band return loss better than -20 dB and insertion loss of 1.2 dB, a pass-band located in S-band and a stop-band extending up to 20 GHz. Analytical derivations for deflection profile and spring constant of fixed-fixed beams are derived for constant distributed loads while taking axial effects into account. Having built experience with the mechanical domain, next, Finite Difference solution schemes are established for pre-pull-in and post-pull-in electrostatic actuation problems. Using the developed numerical tools / pull-in, release and zipping phenomena are investigated. In particular, semi-empirical expressions are developed for the pull-in voltage with associated errors not exceeding 3.7 % of FEA (Finite Element Analysis) results for typical configurations. The shunt, capacitive-contact RF MEMS switch is designed in electromagnetic and mechanical domains for Ka-band operation. Switches fabricated in the first process run could not meet the design specifications. After identifying sources of relevant discrepancies, a design modification is attempted and re-fabricated devices are operated successfully. In particular, measured OFF-state return and insertion losses better than -16.4 dB and 0.27 dB are attained in 1-40 GHz. By applying a 20-25V actuation, ON-state resonances are tuned precisely to 35 GHz with an optimum isolation level of 39 dB.

Page generated in 0.0812 seconds