• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-smooth Dynamics Using Differential-algebraic Equations Perspective: Modeling and Numerical Solutions

Gotika, Priyanka 2011 December 1900 (has links)
This thesis addressed non-smooth dynamics of lumped parameter systems, and was restricted to Filippov-type systems. The main objective of this thesis was twofold. Firstly, modeling aspects of Filippov-type non-smooth dynamical systems were addressed with an emphasis on the constitutive assumptions and mathematical structure behind these models. Secondly, robust algorithms were presented to obtain numerical solutions for various Filippov-type lumped parameter systems. Governing equations were written using two different mathematical approaches. The first approach was based on differential inclusions and the second approach was based on differential-algebraic equations. The differential inclusions approach is more amenable to mathematical analysis using existing mathematical tools. On the other hand, the approach based on differential-algebraic equations gives more insight into the constitutive assumptions of a chosen model and easier to obtain numerical solutions. Bingham-type models in which the force cannot be expressed in terms of kinematic variables but the kinematic variables can be expressed in terms of force were considered. Further, Coulomb friction was considered in which neither the force can be expressed in terms of kinematic variables nor the kinematic variables in terms of force. However, one can write implicit constitutive equations in terms of kinematic quantities and force. A numerical framework was set up to study such systems and the algorithm was devised. Towards the end, representative dynamical systems of practical significance were considered. The devised algorithm was implemented on these systems and the results were obtained. The results show that the setting offered by differential-algebraic equations is appropriate for studying dynamics of lumped parameter systems under implicit constitutive models.

Page generated in 0.1005 seconds