• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data

Richmond, N. C., Hood, L. L. 26 February 2008 (has links)
Previous processing of the Lunar Prospector magnetometer (LP-MAG) data has yielded ∼40% coverage of the Moon. Here, new mapping of the low-altitude LP-MAG data is reported with the goal of producing the first global vector map of the lunar crustal magnetic field. By considering all data regardless of the external plasma environment and using less restrictive editing criteria, 2360 partial and complete passes have been identified that can be used to investigate the lunar crustal magnetic anomalies. The cleanest global coverage is provided using 329 low-altitude nightside and terminator passes. An inverse power method has been used to continue the final mapping data to constant altitude. Using the 329 optimal passes, global maps of the lunar crustal magnetic field are constructed at 30 and 40 km. Consistent with previous studies: (1) the largest concentrations of anomalies are mapped antipodal to the Crisium, Serenitatis, Imbrium, and Orientale basins and (2) isolated anomalies at Reiner Gamma, Rima Sirsalis, Descartes, and Airy are mapped. Anomalies previously unmapped by the LP-MAG experiment include (1) isolated anomalies near the craters Abel and Hartwig, (2) weak magnetization within the Nectarian-aged Crisium and Moscoviense basins, and (3) a relatively weak anomaly in an area dominated by crater chains associated with the formation of Nectaris. Future work with the new low-altitude data set is discussed and will include determining whether the lunar anomalies are capable of deflecting the solar wind and investigating directions of magnetization to evaluate a possible former core dynamo.

Page generated in 0.1253 seconds