• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Mesenchymal Manifestations of Tuberous Sclerosis Complex using Tissue-Engineered Disease Models

Pietrobon, Adam Derrick 09 November 2021 (has links)
Tuberous sclerosis complex (TSC) is a multisystem tumor-forming disorder caused by biallelic inactivation of TSC1 or TSC2. The primary cause of mortality arises from mesenchymal manifestations in the lung and kidney: pulmonary lymphangioleiomyomatosis (LAM) and renal angiomyolipomas (RAMLs). Despite a well-described monogenic etiology, there remains an incomplete understanding of disease pathogenesis. Consequentially, tractable models which fully recapitulate disease characteristics are lacking. Here, I develop and study novel tissue-engineered models of TSC lung and kidney disease. In my first chapter, I demonstrate that lung-mimetic hydrogel culture of pluripotent stem cell-derived diseased cells more faithfully recapitulates human LAM biology compared to conventional culture on two-dimensional plastic. Leveraging this culture system, I conducted a three-dimensional drug screen using a custom 800-compound library, tracking cytotoxicity and invasion modulation phenotypes at the single cell level. I identified histone deacetylase (HDAC) inhibitors as a group of anti-invasive agents that are also selectively cytotoxic towards TSC2-/- cells. HDAC inhibitor therapeutic effects remained consistent in vivo upon xenotransplantation of LAM cellular models into zebrafish. In my second chapter, I develop a genetically-engineered human renal organoid model which recapitulates pleiotropic features of RAMLs in vitro and upon orthotopic xenotransplantation. I find that loss of TSC1/2 affects multiple developmental processes in the renal epithelial, stromal, and glial compartments. First, loss of TSC1/2 leads to an expanded stroma by favouring stromal cell fate acquisition and alters terminal stromal cell identity. Second, epithelial cells in the TSC1/2-/- organoids exhibit a rapamycin-insensitive epithelial-to-mesenchymal transition. Third, a melanocytic population forms exclusively in TSC1/2-/- organoids, branching from MITF+ Schwann cell precursors of a bona fide neural crest-to-Schwann cell differentiation trajectory. Through these two thesis chapters, I realize the power of tissue-engineered models for the study of TSC. This work offers novel insights into the pathogenesis of RAMLs and identifies a new class of therapeutics suitable for trialing in patients with pulmonary LAM.

Page generated in 0.0806 seconds