• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modulation intestinaler Wundheilungsvorgänge und Erhaltung der mukosalen Immunhomöostase

Sturm, Andreas 04 August 2004 (has links)
Die intestinale Mukosa bildet eine biologisch wichtige Barriere zwischen dem Organismus und den schädigenden Faktoren im intestinalen Lumen. Diese komplexe Aufgabe wird durch eine hochdifferenzierte intestinale Mukosa bewältigt, die eine strukturelle sowie funktionelle intestinale Barriere bildet. Das Ziel der vorliegenden Arbeiten war, ausgewählte Aspekte der Regulations- und Reparaturmechanismen der intestinalen mukosalen Barriere weitergehend zu charakterisieren. Unsere Untersuchungen zeigen, dass das Phospholipid Lysophosphatidsäure (LPA) die intestinale epitheliale Zellmigration stimuliert, die dieser Zellen jedoch inhibiert. Die Modulation der intestinalen Wundheilung durch LPA erfolgt durch einen TGF-b-unabhängigen Mechanismus und wird über einen G-Protein-abhängigen Rezeptor vermittelt, wie wir im Rahmen umfangreicher Untersuchungen zur Signaltransduktion unter Verwendung spezifischer Modulatoren der Signaltransduktion wie Bradykinin, Phorbolester, Pertussistoxin, Suramin und neutralisierender TGF-b-Antikörper belegen konnten. In weiteren Experimenten konnten wir zeigen, dass LPA auch in-vivo einen wundheilungsfördernden Effekt besitzt. Die topische Applikation von LPA in diesem experimentellen Kolitismodell bewirkte einen geringeren Gewichtsverlust sowie ein geringeres Ausmaß an intestinaler Entzündung und Nekrose in-vivo. Diese Untersuchungen legen somit nahe, dass LPA die intestinale epitheliale Wundheilung durch eine Modulation der intestinalen epithelialen Migration und Proliferation durch TGF-b-unabhängige Mechanismen stimuliert. Weitere Untersuchungen beschäftigten sich mit der funktionellen Charakterisierung von Lamina propria T-Zellen (LPT) und peripheren Blut T-Zellen (PBT). Wir konnten zeigen, dass der Zellzyklus von LPT distinkt von PBT reguliert wird. Hierbei spielt der Zellzyklusinhibitor p53 eine zentrale Rolle in der Zellzyklusregulation von LPT. Um Autoimmunität zu verhindern, muss es nach einer Eliminierung des Antigens wieder zu einer Depletion des Pools an Effektor-T-Zellen durch die Aktivierung der Apoptose kommen. Wir konnten zeigen, dass beim Antigen-induzierten Zelltod von LPT der intrinsische Apoptoseweg aktiviert wird und Caspase-8 hierbei eine zentrale Rolle spielt. Physiologischerweise sind Zellzyklus und Apoptose eng miteinander verbunden. In weiteren Versuchen konnten wir jedoch zeigen, dass dies nicht bei LPT der Fall ist und somit die von PBT distinkte Regulation von Zellzyklus und Apoptose mukosaler T-Zellen weiter unterstreichen. Zusammengefasst konnten wir durch ausgewählte Untersuchungen zeigen, dass die intestinale Barriere und ihre funktionelle Beeinflussung eine wesentliche Rolle in der Pathogenese und Therapie intestinaler Entzündungen besitzt. Eine Beeinflussung intestinaler Reparaturprozesse und Modulation abnormer T-Zellen könnte neue Möglichkeiten in der Therapie intestinaler Entzündungen, wie z.B. chronisch entzündlichen Darmerkrankungen bewirken. / The intestinal mucosa protect the host from the potential harmful content of the intestinal lumen. To accomplish this difficult goal, the highly complex mucosa forms an anatomical as well as functional barrier to protect the organism.In this work, we aimed to characterize distinct aspect of the intestinal barrier, focussing on distinct regulation and repair mechanism of the intestinal mucosa. First, we demonstrate, that the phospholipid lysophosphatidic acid (LPA) stimulate the migration of intestinal epithelial cells, but, in contrast, inhibit their proliferation. This effect is mediated by G-protein receptors and is TGF-b-independent, as we could demonstrate in further experiments using bradykinine, phorbole ester, pertussis toxin and suramine to modulate distinct signalling pathways.We then demonstrated, using a well-established animal model of colitis, that LPA enhances intestinal wound healing in-vivo. In detail, the topical application of LPA in TNBS-treated rats reduced weight loss, ameliorate intestinal inflammation and prevented necrosis in the animals. This experiments demonstrate for the first time, that LPA modulates migration and proliferation of intestinal epithelial cells by distinct TGF-b independent pathways. Further experiments aimed to explore functional differences between peripheral blood (PBT) and mucosal T-cells (LPT). We demonstrated, that the cell cycle is distinctively regulated in PBT and LPT, identifying p53 as key regulator of LPT cell cycling. To avoid auto-immunity, the pool of effector T-cells must be depleted by apoptosis, once the antigen has been cleared. We demonstrate, that intrinsic pathway of apoptosis is activated during the antigen-induced cell death in LPT and that caspase-8 activity is required to execute LPT apoptosis. Cell cycle and apoptosis are ultimately linked. However, as we show in further experiments, this is not the case in LPT, underlining the distinct regulation of LPT cell cycle and apoptosis.In conclusion, using various distinct experimental tools, we demonstrate that the intestinal barrier itself and the modulation its function plays a fundamental role in the pathogenesis mucosal inflammation. The data presented in this work may therefore open new therapeutic options in the therapy of intestinal inflammatory disorders, such as inflammatory bowel diseases.
32

Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment

Iyappan, R January 2015 (has links) (PDF)
Protein phosphorylation is a key cellular regulatory mechanism. Phosphorylation can either activate or inhibit the function of a particular protein. Activation of protein kinases has been implicated in response to light, pathogen attack, growth regulators, stress and nutrient deficiency in plants. Most of the intracellular signaling pathways use protein phosphorylation to create signals and conduct them further. Identification of the physiological substrates for the protein kinase enables the understanding of how the signaling networks function and how they are disturbed under adverse conditions. Identification of the physiological substrates for the kinase is limited by the low stoichiometry of protein phosphorylation inside the cell. Although, recent advances in mass spectrometric techniques have increased the identification of phosphorylated protein in the cell, the precise connection between the kinase and identified phosphorylated protein is not established. Dual-specificity kinases that phosphorylate on serine, threonine and tyrosine residues have been identified and characterized in plants. However, the in vivo substrates for most of these kinases have not been identified. Recently a manganese-dependent dual-specificity STY protein kinase (STYK) has been identified from Arabidopsis thaliana which has been suggested to play a role in plant growth, development and in systemic acquired resistance. The identification of the physiological substrate for AtSTYK may help in understanding the signal transduction pathway the kinase in involved and how it is perturbed in different physiological condition. Therefore, the main objectives of my current study are,  To identify the physiological substrates of the AtSTY dual specificity kinase (STYK). 1) Identification of the substrates by using genetic, proteomic and biochemical approaches. 2) Biochemical characterization of the substrate phosphorylation. 3) Identifying the biochemical function of the substrate protein. 4) Assessing the significance of substrate phosphorylation.

Page generated in 0.0854 seconds