• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the identification and function of metabolites involved in peroxisome proliferator-activated receptor (PPAR) α activation / ペルオキシソーム増殖剤応答性受容体PPARα活性化に関与する代謝物の同定及び機能解析に関する研究

Takahashi, Haruya 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第18327号 / 農博第2052号 / 新制||農||1022(附属図書館) / 学位論文||H26||N4834(農学部図書室) / 31185 / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 河田 照雄, 教授 金本 龍平, 教授 入江 一浩 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
2

Effect Of Lipids On Binding Characteristics Of Opioid Receptors

Apaydin, Serpil 01 April 2005 (has links) (PDF)
Effect of lipids on binding characteristics of opioid receptors in membranes prepared from rat brain were studied. Lipid concentrations causing changes in specific binding of [3H]Endomorphin-1 (ProE1), an opioid agonist highly specific to mu-type opioid, [3H]Ile5,6deltorphin II (DIDI), an agonist ligand highly specific to delta type receptor and [3H]Naloxone (Nlx), a universal opioid receptor antagonist were determined. Inhibition of [3H]ProE1, [3H]DIDI and [3H]Nlx specific binding was also examined by homologous displacement experiments in the presence and absence of lipids. In order to understand whether the changes occurring in the specific binding is due to changes in equilibrium dissociation constant (KD) or maximum number of binding sites (Bmax), the equilibrium binding experiments were performed. Arachidonic acid (AA) inhibited binding of both agonist and antagonist ligand in a dose dependent manner with IC50 values of 0.15, 0.1, and 0.6 mM for [3H]ProE1, [3H]DIDI and [3H]Nlx, respectively. Kd values were not affected while Bmax values decreased 38 % and 76 % for mu, and delta receptor subtypes, respectively. For [3H]Nlx, Bmax values decreased 20 and 56 % in the absence and presence of 100 mM NaCl, respectively. Cholesteryl hemisuccinate (CHS) enhances (100 % of control) ligand binding at mu-sites however no effect was encountered at delta sites. Furthermore, CHS also enhances (50 % of control) the binding of antagonist ligand in the absence of NaCl. Bmax values were increased by 70 % for mu sites and 40% for antagonist ligand binding site. Under similar conditions Kd values were not affected. Phosphatidic acid (PA) and phosphatidylcholine (PC) exhibited negligible effect on ligand binding. PA decreased specific binding of ProE1 and DIDI by 16 and 10 %, respectively. Specific binding of antagonist ligand Nlx decreased 11 % in the presence of NaCl whereas in the absence of NaCl specific binding is very close to control. In the presence of PC specific binding of both agonist and antagonist ligands were around control values. In this study modulatory effect of lysophospholipids, lysophosphatidic acid and lysophosphatidylcholine on opioid binding sites were evaluated for the first time. Both lysophospholipids exhibited similar effects: decreasing specific binding in receptor subtype independent manner between 0.1 to 1 mM range. Kd values were not significantly affected, while remarkable decrease (45-75 %) in Bmax values were observed.

Page generated in 0.0398 seconds