• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lysosomal reacidification by degradation of poly(dl-lactide-CO-glycolide) nanoparticles in a lipotoxic cardiomyopathy model

Zasadny, Frederick Martin 01 December 2016 (has links)
Lipotoxic cardiomyopathy increases the risk of heart failure in obese patients by adversely altering heart structure and function via toxic lipid specie mediated cellular stress and cell death. Increased fatty acid uptake and esterification in cardiomyocytes increases toxic lipid intermediates. These cardiotoxic lipid species such as diacylglycerol have recently been shown to deacidify lysosomes in cardiomyocytes by activating protein kinase C βII mediated NADPH oxidase 2 generation of superoxide that inhibits proton pumps on lysosomal membranes by S-nitrosylation. Autophagy, a lysosome dependent cellular survival process, is impaired upon cardiomyocyte lipid-overload due to inhibition of pH-dependent proteolytic autophagosome degradation in the lysosome. Subsequent accumulation of autophagic vesicles heightens cardiomyocyte sensitization to additional stresses of ischemia-reperfusion or ER dysfunction, culminating in impaired cardiac metabolic flexibility leading to cell death. Low cardiomyocyte regenerative capacity calls for strategies to preserve cell number in states of increased stress, such as lipid-induced impairment of autophagy. Lysosome-targeted reacidifying devices can provide an effective means to restore autophagic flux. In this thesis, a therapeutic strategy utilizing poly(DL-lactide-co-glycolide) (PLGA) nanoparticle degradation to reacidify lysosomes and revert cardiotoxic lipid specie induced blockade in autophagic flux in cardiomyocytes is presented. Endocytosed PLGA acidic nanoparticles were designed to rapidly degrade and release acidic monomers in lysosomes to restore pH dependent phosphatase and cathepsin L activity in cardiomyocytes with acute lipotoxicity. Optimized pre-palmitate treatment periods demonstrated that PLGA nanoparticles with polyethylenimine cationic surface coatings provide an effective restoration of autophagic flux in the presence of lipid-overload modeled by acute palmitate treatment in cardiomyocytes.

Page generated in 0.0529 seconds