• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IntegraÃÃo de heurÃsticas lagrangeanas com algoritmos exatos para a otimizaÃÃo de particionamento de conjuntos / Integration of Lagrangean heuristics with exact algorithms to otimization of the set partitioning problem

Alexsandro de Oliveira Alves 31 August 2007 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Neste trabalho avaliamos mÃtodos heurÃsticos e exatos para o Problema de Particionamento de Conjuntos (PPC). Realizamos testes computacionais com heurÃsticas lagrangeanas baseadas em algoritmos gulosos, busca tabu e mÃtodo de otimizaÃÃo pelo subgradiente. Os resultados obtidos, comparados com os da literatura, comprovam a eficiÃncia de nossas heurÃsticas na obtenÃÃo de limites inferiores e superiores de boa qualidade, em tempo computacional razoÃvel, para instÃncias da literatura. Utilizamos um esquema de Branch and Bound para tentar resolver instÃncias do PPC ÃÂotimalidade e para comprovar a qualidade dos resultados alcanÃados por nossas heurÃsticas. / In this work we evaluate both exact and heuristic methods for the set partitioning problem (SPP). These heuristics are based on greedy algorithms, tabu search and subgradient optimization. Computational experiments performed on benchmark instances of the problem indicate that our heuristics are competitive with existing ones from the literature in obtaining both lower and upper bounds of good quality in reasonable execution time. We use a Branch and Bound algorithm that allows to prove optimality of solutions obtained by our heuristics for a large set of benchmark instances of the SPP. Thus, we show that our heuristics are efficient in obtaining feasible solutions of good quality for this problem.

Page generated in 0.1012 seconds