• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MÃtricas crÃticas do funcional volume, volume mÃnimo e curvatura mÃnima em variedades de dimensÃo quatro / Critical metrics of the volume functional, mÃnimal volume and minimal curvature on four-dimensional compact manifolds

Rafael Jorge Pontes DiÃgenes 05 May 2015 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Este trabalho tem como principal objetivo estudar as mÃtricas do funcional volume, volume mÃnimo e curvatura mÃnima em variedades compactas de dimensÃo quatro. Na primeira parte o objetivo à investigar as mÃtricas crÃticas do funcional volume sob a condiÃÃo de tais mÃtricas serem Bach-flats em uma variedade compacta com bordo ∂M. Provamos que uma mÃtrica crÃtica do funcional volume Bach-flat em uma variedade simplesmente conexa de dimensÃo quatro com bordo isomÃtrico a uma esfera padrÃo à necessariamente isomÃtrico a uma bola geodÃsica em um espaÃo forma simplesmente conexo R4, H4 ou S4. AlÃm disso, mostramos que em dimensÃo trÃs o resultado continua valido substituindo a condiÃÃo Bach-flat pela condiÃÃo mais fraca de M ter o tensor de Bach harmÃnico. Na segunda parte estudamos os invariantes geomÃtricos: volume mÃnimo e curvatura mÃnima. Em 1982, Gromov introduziu o conceito de volume mÃnimo para uma variedade suave como sendo o Ãnfimo de todos os volumes sob as mÃtricas de curvatura seccional limitada, em valor absoluto, por 1. Enquanto a curvatura mÃnima, que foi introduzido por Yun, à o menor pinching da curvatura seccional dentre as mÃtricas de volume 1. Em ambos os casos damos estimativas inferiores envolvendo alguns invariantes diferenciÃveis e topolÃgicos. Dentre elas mostraremos exemplos em que as estimativas sÃo Ãtimas. AlÃm disso, obtemos uma caracterizaÃÃo para o caso da igualdade em algumas estimativas. / This aim of this is to study the critical metrics of the volume functional, minimal volume and minimal curvature on four-dimensional compact manifolds. In the first part, we investigate Bach-flat critical metrics of the volume functional on a compact manifold M with boundary ∂M. Here, we prove that a Bach-flat critical metric of the volume functional on a simply connected 4-dimensional manifold with boundary isometric to a standard sphere must be isometric to a geodesic ball in a simply connected space form R4, H4 or S4. Moreover, we show that in dimension three the result even is true replacing the Bach-flat condition by the weaker assumption that M has divergence-free Bach tensor. In the second part we investigate the geometric invariants: minimal volume and minimal curvature. In 1982, Gromov introduced the concept of minimal volume for a smooth manifold as the greatest lower bound of the total volumes of Mn with respect to complete Riemannian metrics whose sectional curvature is bounded above in absolute value by 1. While the minimal curvature, introduced by G. Yun in 1966, is the smallest pinching of the sectional curvature among metrics of volume 1. In both cases we give below estimates to minimal volume and minimal curvature on 4-dimensional compact manifolds involving some differential and topological invariants. Among these ones, we get some sharp estimates. Moreover, we deduce characterizations for the equality case in some estimates.

Page generated in 0.0479 seconds