421 |
Evolution des caractéristiques physico-chimiques, microstructurales et hydromécaniques de limon traités aux liants lors d'une circulation d'eauLEMAIRE, Kevin 16 October 2012 (has links)
La stabilisation des sols à la chaux et aux liants hydrauliques permet de valoriser des sols aux propriétés médiocres. Dans cette étude, une démarche multi-échelle a été mise en oeuvre pour décrire les effets du traitement mixte sur les caractéristiques et les propriétés de sols limoneux qui présentent une composition minéralogique différente. Cette démarche a également été mise en oeuvre pour comprendre la réponse physico-chimique et mécanique de ces sols traités lors d'une circulation d'eau. Les propriétés hydromécaniques du sol traité s"avèrent conditionnées par l'organisation microstructurale, elle-même étant dépendante de la minéralogie du sol. Dans un limon dépourvu de mica, les particules argileuses entourent des particules plus grossières pour former des agglomérats millimétriques autour desquels se déposent les liants. Le développement d'un gel de C-(A)-S-H assure alors une continuité dans l'ensemble du matériau, et le développement des performances mécaniques est satisfaisant. Le limon riche en micas introduit un amas de plaquettes sur lesquelles sont dispersés les liants. La performance mécanique est alors bien plus faible. La circulation prolongée et continue d'eau est conditionnée par cette organisation microstructurale. Dans le cas du limon dépourvu de micas, celle-ci assure ainsi un maintien des performances mécaniques en réponse au faible lessivage des produits cimentaires. Par contre dans le limon riche en mica, les phases cimentaires sont fortement atteintes par la circulation. La perte des effets du traitement est alors totale, même si un retard de l'arrivée d'eau permet de la ralentir.
|
422 |
Durabilité du limon de Jossigny traité à la chaux et soumis à différentes sollicitations hydriques : comportements hydraulique, microstructural et mécaniqueLe Runigo, Barbara 23 October 2008 (has links)
La pérennité des améliorations apportées par la chaux à un sol limoneux utilisé pour la construction d’ouvrages hydrauliques ou de remblais en zone inondable vis-à-vis des sollicitations hydriques auxquelles ces derniers peuvent être soumis (immersion, circulation d’eau) est encore débattue. Dans ce contexte, ce travail s’est attaché à simuler expérimentalement puis à décrire l’effet de ces sollicitations sur les propriétés géotechniques d’un sol limoneux compacté traité à la chaux (perméabilité, résistance mécanique). Il a été établi que le maintien des améliorations mécaniques est fortement lié à la perméabilité des sols : plus leur perméabilité est forte, plus les pertes de performances mécaniques sont rapides. Ces pertes de performances peuvent être attribuées à une dissolution partielle de la chaux non consommée mais aussi à la décalcification des produits cimentaires formés suite à l’ajout de chaux. L’ampleur de ces processus s’avère être une fonction de la perméabilité, une forte perméabilité les accélérant à l’inverse d’une faible perméabilité. Enfin, une étude a été conduite sur l’effet des conditions initiales sur la microstructure et la perméabilité des sols traités à la chaux afin de déterminer les états initiaux à privilégier en terme de durabilité. Il a été montré que l’ajout d’un faible dosage en chaux et qu’un compactage à une faible énergie pouvait induire, au contraire d’un fort dosage et d’un compactage du côté humide, de fortes perméabilités. Ainsi, un fort dosage en chaux et un compactage du côté humide pourraient permettre de maintenir dans le temps les améliorations apportées par la chaux aux sols limoneux exposés à des sollicitations hydriques.
|
423 |
Theoretical and experimental investigations for measuring interfacial bonding strength between ice and substrateJavan-Mashmool, Mandana January 2005 (has links) (PDF)
Cette étude porte sur le développement d'une technique mécanique pour mesurer la force d'adhérence de la glace atmosphérique à l'aide d'un film polymère piézoélectrique (PVDF) inséré à l'interface glace/substrat. Dans le cas présent, le substrat est une poutre d'aluminium sur laquelle l'élément piézoélectrique PVDF est collé et sur laquelle la glace atmosphérique est déposée artificiellement à partir de gouttelettes d'eau surfondues. La poutre composite ainsi formée, qui est encastrée à une extrémité au niveau de l'aluminium et libre de l'autre, est soumise à une flexion simple par une excitation mécanique sinusoïdale appliquée sur l'extrémité encastrée dans le plan vertical en utilisant un pot vibrant.
Le coefficient piézoélectrique de charge est utilisé afin de mesurer la charge électrique induite par le film PVDF qui est directement proportionnelle à la contrainte mécanique générée à l'interface glace/poutre, résultante de la contribution de la contrainte en flexion et de cisaillement. Ce principe permet ainsi de développer une méthode de mesure macroscopique et directe afin de déterminer des contraintes mécaniques à l'interface de glace atmosphérique/substrat. Tous les essais ont été réalisés à une fréquence proche de la fréquence de résonance de la poutre composite.
Après avoir étalonné la méthode par une modélisation numérique et dynamique de la poutre en aluminium seule, trois séries d'essais ont été effectuées dont deux avec des poutres en aluminium de rugosités différentes et la troisième avec une poutre identique géométriquement mais constituée de plexiglas. Les résultats obtenus avec des dépôts de glace de quatre millimètres d'épaisseur montrent que la contrainte d'interface augmente linéairement avec l'augmentation de l'amplitude de la contrainte d'excitation jusqu'au décollement de la glace, résultant d'un délaminage progressif initié à l'encastrement et qui se propage vers le milieu de la poutre composite. L'instant où le délaminage atteint le film PVDF est facilement détectable par la lecture du signal délivré par ce dernier qui permet ainsi de déterminer la contrainte mécanique nécessaire pour détacher la glace du substrat. Les résultats obtenus à partir des trois séries montrent que la méthode proposée est valide puisque les valeurs des forces d'adhérence obtenues dépendent de la rugosité du substrat dont l'augmentation entraîne une augmentation de la force d'adhérence et les force d'adhésion dépendent aussi du matériau constituant le substrat avec une force d'adhésion sur l'aluminium environ cent fois plus grande que pour le plexiglas. De plus, les résultats obtenus sont en accord avec les ordres de grandeurs des forces d'adhérence de la littérature.
Ainsi, une méthode simple et originale, basée sur l'utilisation de films polymères piézoélectriques PVDF et permettant des mesures directes de la force d'adhérence de la glace a été développée et validée. Cette méthode a permis de tester différents matériaux pour des épaisseurs de glace de 4 mm. Cependant, l'épaisseur du dépôt de glace n'est pas une limitation mais l'influence de cette dernière sur la force d'adhérence reste encore à être démontrée.
|
424 |
Ice shedding from overhead electrical lines by mechanical breaking : a ductile model for viscoplastic behaviour of atmospheric ice = Délestage de glace des câbles électriques par bris mécaniques : un modèle du comportement ductile viscoplastique de la glace atmosphérique poreuseEskandarian, Mojtaba January 2005 (has links) (PDF)
Le givrage atmosphérique des lignes de transport d'énergie électrique peut causer de sérieux problèmes aux réseaux de transport et de distribution en raison de la forte adhésion de la glace aux substrats. Afin d'éviter des pannes majeures d'électricité causées par de sérieuses tempêtes de verglas, l'amélioration des caractéristiques mécaniques des composantes des lignes de transport ainsi que les techniques anti-givre et de dégivrage doivent être considérées. Le développement de ces techniques exige, à son tour, des connaissances approfondies sur les forces d'adhésion et les caractéristiques de résistance volumiques de la glace atmosphérique.
L''objectif principal de cette recherche, dans le cadre de la problématique générale du délestage de glace, est de présenter un modèle du comportement ductile viscoplastique de la glace atmosphérique poreuse. Les effets des activités de fissuration devraient être ajoutés au modèle afin de prédire le comportement du matériau en transition et dans des régions fragiles. Cela peut se faire en modifiant, tant les formulations des paramètres élastique, viscoélastique et plastique des matériaux pour mieux tenir compte de l'activité de fissuration, que les surfaces d'écoulement pour refléter l'effet des taux élevés de déformation.
Un survol de la littérature a démontré que certains modèles ont été développés, depuis environ deux décennies, afin de prédire le comportement mécanique de l'eau douce glacée. Toutefois, pratiquement tous les modèles prédisent le comportement mécanique de l'eau douce glacée uniforme. Ainsi, l'effet de la pression sur le comportement du matériau, induit par la présence de bulles d'air, n'a pas été considéré dans ces modèles. Cependant, la porosité de la glace atmosphérique varie en fonction du régime d'accumulation, parfois jusqu'à 35 %, ce qui correspond à des densités de glace allant de 917 kg/m3 à 600 kg/m3. Les résultats d'essais en laboratoire effectués sur de la glace poreuse ont démontré l'influence significative de la porosité sur le module élastique et la résistance de la glace.
Les essais de matériaux effectués sur différents types de glace polycristalline montrent que la glace présente un comportement de type fluage à des températures au dessus de -40°C. Cela veut dire que le comportement mécanique de la glace est sensible à la vitesse de déformation et à la température, et qu'un minimum de trois composantes de déformations macroscopiques, notamment les déformations élastiques (instantanées) et inélastiques, soit de type viscoélastique à retardement et de type viscoplastique (irréversible), décrivent la réponse du matériau. La nature complexe de cette question est due au fluage non linéaire, à la transition de la glace de son état ductile à son état fragile en fonction des taux de déformation, de même qu'à plusieurs paramètres du matériau, à la complexité dans la propagation des fissures, et aux difficultés associées à sa transposition dans des équations constitutives.
La méthodologie utilisée pour résoudre le système d'équations non linéaires est basée sur le principe des travaux virtuels qui conduit à une formulation intégrale adaptée à l'application de la méthode des éléments finis. Le comportement du matériau est exprimée sous forme incrémentale, ce qui requiert un schéma pour l'intégration de la loi d'évolution du comportement en utilisant par exemple un algorithme basé sur la méthode trapézoïdale généralisée (schéma d'Euler implicite / explicite). Le schéma implicite est inconditionnellement stable, alors que la stabilité du schéma explicite est fonction du pas de temps choisi. De plus, une méthode de linéarisation incrémentale suffit pour résoudre ce système d'équations non linéaires. Dans la présente recherche toutefois, le logiciel de calcul des structures ABAQUS est utilisé et le comportement du matériau est décrit à l'aide d'un sous-programme d'intégration numérique d'une loi de comportement spécifique à l'usager (UMAT). La méthodologie de la présente recherche est ensuite adaptée à la formulation des lois de comportements élastiques, viscoélastiques et plastiques pour différents types de glace atmosphérique naturelle accumulée sur des câbles électriques et à leur implémentation dans le logiciel ABAQUS.
Afin de déterminer le domaine d'application de chaque modèle mathématique pour la glace atmosphérique, la texture (morphologie) et la structure des dépôts de glace sur les câbles doivent être connues. Pour ce faire, une étude détaillée de la microstructure et du contenu en bulles d'air de la glace atmosphérique a été conduite par Laforte et al. (1983). La structure du grain et des bulles d'air a été étudiée dans diverses conditions atmosphériques, mais la direction des « c-axis » demeurait inconnue. Dans la présente étude, une série d'observations complémentaires de la microstructure ont été conduites et ont démontré que la structure des dépôts de verglas était similaire à celle de la glace en colonne de type S2 (eau douce glacée), alors que la glace en colonne de type SI est généralement observée dans les régions de transition et initiales du régime d'accrétion de glace dans des conditions sèches (givre lourd). Par contre, la structure granulaire s'observe dans un régime d'accrétion dans des conditions très sèches (givre léger). Dans ce travail, nous utilisons la méthodologie générale suivante pour décrire le comportement ductile de la glace atmosphérique poreuse :
1) Déformations élastiques instantanées : La loi de Hooke établit une relation entre le champ de déformations élastiques et le champ de contraintes associé. Les modules élastiques de la glace polycristalline uniforme sont déterminés à partir des valeurs du monocristal obtenues par une technique d'étalement de Hill (1952). Les constantes élastiques du monocristal, mesurées par Gammon et al. (1983), ont été utilisées afin de déterminer les modules élastiques de la glace uniforme. Les limites supérieures et inférieures de chaque module élastique du polycristal sont déterminées à l'aide des techniques de calcul des moyennes de Voigt (1910) et de Reuss (1929), et la valeur moyenne obtenue est considérée comme étant le module élastique de la glace polycristalline.
La modification pour la glace poreuse est rendue possible en définissant la contrainte effective d'un matériau poreux qui consiste en une contrainte induite dans le matériau solide et en une pression des pores. Deux situations extrêmes, c'est-à-dire les modèles avec drainage et sans drainage, sont pris en considération et dans chaque cas, les hypothèses de Voigt (1910) et de Reuss (1929) sont utilisées pour calculer la pression des pores, la force et la contrainte effectives, de même que la variation du contenu liquide. Le modèle avec drainage est alors appliqué aux questions poro-élastiques pour les dépôts de verglas et le modèle sans drainage est mieux adapté pour les dépôts de givre.
2) Déformation viscoélastique à retardement : La rhéologie à court terme proposée par Sinha (1978) est utilisée pour formuler la contrainte viscoélastique à retardement induite par glissement à la frontière du grain en fonction de la déformation élastique. L'effet de la température sur le comportement viscoélastique est introduit à l'aide d'une fonction de décalage dans le modèle. L'effet de la porosité, pour sa part, est intégré dans les formulations en remplaçant la déformation élastique par l'intensité de la contrainte effective correspondante d'un matériau poreux. Finalement, une fonction de changement structurel est définie afin de considérer l'influence de la déformation plastique sur la contrainte viscoélastique. Les paramètres du matériau induits dans la formulation pour la contrainte viscoélastique ont été choisis à partir des calculs de Derradji-Aouat (2000).
3) Déformation plastique permanente : La formulation pour la déformation plastique est développée à partir de la théorie du modèle « cap-plasticity » et en considérant une série de variables internes, les déformations plastiques et leur taux de variation. Le modèle de plasticité pour la glace poreuse inclut la limite élastique, les différences entre le comportement en traction et en compression, de même que les effets de la porosité et de la température. La surface de charge ou fonction d'écoulement, dans ce cas-ci, inclut trois segments importants : un segment parabolique d'écoulement en cisaillement de type Drucker-Prager modifiée, un segment « cap » elliptique qui intersecte l'axe de contraintes hydrostatique et un segment définissant la limite en tension. La critère d'écoulement en cisaillement décrit l'effet de la pression sur la résistance de la glace à l'aide de trois paramètres : la cohésion du matériau, l'angle de friction et la pression hydrostatique correspondant à la contrainte de cisaillement maximale. L'état actuel du «segment cap» est déterminé par deux variables internes : la pression à la contrainte de cisaillement maximum et la pression de fusion de la glace poreuse. La pression à la limite de résistance en tension dans la région ductile est le seul paramètre du matériau en relation avec les limitations en tension. Les données d'analyses de Jones (1982), Nadreau et Michel (1984), et Rist et Murrell (1997) sont utilisées afin de déterminer, en fonction de la surface d'écoulement en cisaillement pour la glace uniforme, les paramètres du matériau qui sont affectés par la structure de la glace, sa température et son taux de déformation, mais qui ne sont pas affectés par la dimension du grain. Une loi d'écoulement associée et un paramètre d'écrouissage du segment cap sont utilisés dans ce travail. L'effet de la porosité est considéré dans le modèle à l'aide d'une définition de la contrainte effective.
Enfin, la catégorisation des contributions scientifiques majeures de cette recherche peut se faire en considérant les objectifs initialement définis et en suivant la méthodologie générale comme suit : (a) en classifiant la structure de la glace atmosphérique accumulée sur les câbles électriques en fonction de la forme des grains (texture) et de l'orientation du «c-axis» (structure) ; (b) en introduisant trois programmes développés dans le progiciel Maple Mathematical Program afin de déterminer les modules élastiques pour différents types d'eau douce glacée (glace granulaire et en colonne SI, S2 et S3) ; (c) en introduisant un modèle poroélastique afin de modifier les modules élastiques de la glace atmosphérique poreuse ; (d) en introduisant un modèle de plasticité de type « cap-model » pour différents types de glace atmosphérique poreuse ; (e) en présentant une nouvelle fonction d'écoulement dans la région ductile d'eau douce gelée, qui est en meilleur accord avec les données d'analyses disponibles, et ensuite en les généralisant pour inclure la porosité à l'aide d'un « cap » elliptique mobile; et (f) en développant un sous-programme d'une loi de comportement viscoplastique spécifique à l'usager (UMAT) pour la glace atmosphérique dans la région ductile, incluant les domaines poroélastique, viscoélastique, et « cap-model » de platicité.
|
425 |
Analysis of the cooling capacity of water as a function of its quality during DC castingMeenken, Thomas January 2003 (has links) (PDF)
As in many thermal processing technologies, there is a delicate balance between productivity and quality during ingot cooling process. Higher cooling velocities increase productivity but also create higher temperature gradients inside the ingot. Such a fast cooling does not leave sufficient time to establish the equilibrium within the solid, thus in the most affected surface layer the composition and crystalline structure are different from those in the bulk metal. The heat flux plays a particular role for the production of alloys where different melting points and complex structure formation -depending on the temperature- are present. To prevent the two worst cases - cracking and remelting - during cooling a balance has to be found between good productivity and quality on the one side but also a high security on the other side. To avoid the negative effects of cracking and remelting, it is necessary to determine the heat flux as a function of the influencing parameters and to control the cooling in order to obtain a maximal productivity with the required quality. There is no widely accepted method for the quantitative characterization of the cooling capacity of the water. The cooling may be characterized by the heat transfer coefficients measured in different boiling regimes on the surface or directly by the heat flux. As the fluid flow and heat transfer phenomena are very complicate in the falling liquid-vapour film, using the heat transfer coefficients does not necessarily help the understanding of the underlying mechanisms. However, the correlation between the surface heat flux and temperature for a given surface roughness and water quality includes all the relevant information about the cooling process. Thus in the present project our main objective was to determine the surface heat flux for a water cooled ingot as a function of the water quality in order to provide a tool for assuring a uniform quality in the cast-shop. A further objective was to improve the understanding of the flow of boiling liquid film along a solid surface. The first challenge in the project was the development of a surface temperature and heat flux measurement method which does not disturb the ingot surface. A heat flux sensor attached onto the surface would have negative effects on the film-nucleate boiling process and increase the surface roughness that affects the nucleation of bubbles. Furthermore it was important that the measurement method be fast responding and sensitive enough to detect very rapid and weak variations in the surface temperature. Thus an innovative surface temperature sensing method - using an open-tip thermocouple - was developed. This sensor was inserted into a null-point cavity from the backside of the aluminium ingot. The open-tip sensor combined with the null-point cavity forms a null-point calorimeter. Using the inverse solution of the general heat conduction equation, it is possible to determine the surface heat flux from the measured temperature history. For the analytical solution of the heat conduction equation in one dimension we used the so called Cook-Felderman equation. It was also investigated how well the assumptions of the Cook-Felderman equation are applicable to the actual conditions in our experimental setup. For this purpose a computer program was developed. The algorithm uses the finite volume approach; the program was written in C++ and calculates the transient 2D temperature distribution in the solid sample. The two-dimensional model uses the measured temperature histories as boundary conditions. The computer predictions were used to determine the horizontal and the vertical heat flux components during the cooling process. Furthermore it was analyzed how the heat flux results obtained analytically by the Cook-Felderman equation compare to the more detailed numerical solutions. The cooling process is strongly influenced by the different water types and different ingot surfaces. Thus the investigations were focused on the difference between several water types such as tap water (conductivity: 90fiS), plant water (conductivity: 1900/uS') and water with higher conductivity (conductivity: 3200/uS). These water types were tested on different ingot surfaces to eliminate the influence of the surface structure. In addition, the effects of some water additives and a water-oil mixture on the surface heat flux were investigated. The surface temperature measurements were accompanied by a visualization of the surface boiling effects. Furthermore the difference between different ingot surfaces was analyzed. The tests made on machined and a rough surface ingots provided information about the differences in the temperature cooling curves as well as information about the structure of the cooling water film. All collected measurement and visualization data were analyzed to explain the surface flow and boiling effects during the cooling process. The dynamic structure of the falling water film was investigated. Certain characteristics in the temperature cooling curves can be explained with the structure of the water film. We achieved a very good experimental repeatability. We found that the repeatability of the boiling phenomena itself depends on the measurement position (height along the ingot). It was observed that there are more fluctuations on a machined ingot than on a rough surface ingot. Even two different rough plates have different heat flux results. The tests using different water types have shown that there is almost no difference between tap and plant water, neither on a machined nor on a rough ingot. A difference could only be found between tap water and high conductivity water.
|
426 |
Étude des conditions critiques de la propagation de l'arc sur les isolateurs recouverts de glace = Study of critical conditions of arc propagation on ice-covered insulatorsAboutorabi, Seyed Sadreddin January 2003 (has links) (PDF)
Dans les régions froides, les accumulations de glace atmosphérique peuvent diminuer la tenue diélectrique des isolateurs utilisés dans les réseaux de transmission de l'énergie électrique. Cette diminution de la tenue diélectrique peut entraîner, sous certaines conditions, un contournement électrique des isolateurs recouvert de glace qui se traduit généralement par des interruptions plus ou moins longues de l'alimentation en énergie électrique.
L'objectif principal de cette étude est d'étudier les paramètres influençant le processus de contournement électrique des isolateurs recouverts de glace en vue d'améliorer le modèle mathématique statique actuel de prédiction de la tension critique de contournement. L'idée principale est de pouvoir appliquer le modèle mathématique développé à la CIGELE à des longueurs des isolateurs allant jusqu'à quatre mètres correspondant a ceux présents sur le réseau 735 kV d'Hydro-Québec. De plus, les résultats obtenus contribueront à accroître les connaissances sur le processus de contournement et de propagation de l'arc électrique sur des isolateurs recouverts de glace par la détermination des conditions de maintien de l'arc.
Les séries de tests effectuées au cours de cette recherche ont été réalisées sur une colonne isolante qui est utilisée dans le réseau 735 kV de transmission de l'énergie électrique au Québec. Les tests effectués au laboratoire de la CIGELE à l'Université du Québec a Chicoutimi (UQAC) ont permis de déterminer la tension minimale de maintien de l'arc électrique le long d'un intervalle d'air de longueur variable. Pour ce faire, il a été décidé d'utiliser la même procédure expérimentale décrite par les étapes suivantes : (i) réalisation d'une accumulation de glace en régime humide sur la colonne isolante ; (ii) création d'un intervalle d'air artificiel près de l'électrode haute tension en découpant une partie du dépôt de glace ; (iii) établissement d'un arc blanc le long de l'intervalle d'air par application de la tension jusqu'à ce que ce dernier soit stable ; enfin, (iv) diminution de la tension jusqu'à extinction de l'arc. Cette dernière étape permet ainsi de déterminer la tension minimale nécessaire au maintien de l'arc qui correspond à la valeur de la tension appliquée lors de l'extinction de l'arc. Chaque série de tests a été réalisée en ajustant les paramètres suivants : (i) la longueur de la colonne isolante ; (ii) la longueur de l'intervalle d'air et (iii), la valeur du courant de fuite. Ce dernier paramètre a été contrôlé indirectement en faisant varier la valeur de la conductivité surfacique du dépôt de glace. Les résultats ainsi obtenus ont montré que la longueur de l'isolateur ou de la colonne isolante n'a pas de réelle influence sur la valeur de la tension de claquage de l'intervalle d'air. Par contre, une relation non-linéaire a été établie entre la longueur de l'isolateur et la tension de maintien de l'arc. De plus, une série de tests suivant la même procédure expérimentale décrite précédemment a été effectuée sur des isolateurs de poste de même type mais présentant un diamètre plus grand. Les résultats obtenus ont permis de mettre en évidence que le diamètre, D, de l'isolateur ainsi étudié a une influence sur la condition de maintien de l'arc.
Les résultats obtenus au cours de cette recherche ont donc permis d'établir une nouvelle formulation mathématique pour la condition de maintien de l'arc ainsi que de déterminer les paramètres pouvant influencer cette condition. La formulation mathématique proposée a été établie afin de tenir compte de l'allongement de l'arc électrique provoqué par l'élargissement de l'intervalle d'air provoqué par la fonte du dépôt de glace.
Basées sur les résultats obtenus au cours de cette recherche, quelques recommandations et pistes de recherche ont été proposées.
|
427 |
Initiation et développement des décharges couronnes sur une surface de glaceNdiaye, Ibrahima January 2003 (has links) (PDF)
Les surfaces diélectriques exposées à des champs électriques tangentiels constituent généralement la partie la plus vulnérable des systèmes haute tension. Bien que le contournement de ces surfaces ait été largement étudié, et malgré le fait qu'on ait une bonne connaissance des décharges électriques dans les gaz, la compréhension physique de la décharge sur une surface de glace reste encore à explorer.
Les investigations entreprises dans ce projet visaient à explorer davantage les mécanismes physiques fondamentaux d'une décharge électrique sur une surface de glace. La compréhension de ces mécanismes pourra permettre de concevoir des équipements mieux adaptés au climat des régions froides et ainsi d'accroître la fiabilité des réseaux de transport d'énergie sous des conditions de givrage atmosphérique.
Des techniques de photographie ultra rapide ont été utilisées afin d'observer les premières nanosecondes du développement de la décharge. La forme des isolateurs réels étant complexe, un modèle physique de géométrie simple (tige-plan), avec différentes valeurs de rayons de courbure, a été utilisé. Le champ d'apparition des couronnes de streamers, leur vitesse de propagation et la distance axiale du volume critique ont été étudiés.
Les résultats ont été déterminés à l'aide de la loi empirique de Peek et comparés avec ceux obtenus dans le cas de l'air. Ils ont montré que la présence d'une surface de glace modifiait considérablement les paramètres d'initiation et développement des couronnes de streamers. Plusieurs hypothèses pouvant être à la base de l'initiation et de la propagation d'une décharge électrique sur une surface de glace ont été retenues. Il est possible que la décharge en interagissant avec la surface de glace fasse intervenir d'autres mécanismes physiques inexistants dans le cas de l'air. L'hypothèse d'une éventuelle accumulation de charges à la surface de la glace nous a semblé très pertinente. La présence de ces charges surfaciques modifierait considérablement la distribution du champ électrique local, ce qui expliquerait la distorsion des paramètres d'initiation et de propagation de la décharge en présence d'une surface de glace. Des mécanismes qui pourraient être à la base du processus d'accumulation de ces charges ont été aussi identifiés.
|
428 |
Étude expérimentale et théorique sur le processus de délestage par fonte de la glace accumulée autour d'un cylindreBouamoul, Amal January 2002 (has links) (PDF)
En dépit des efforts pour modéliser 1'accretion de glace (givre et verglas) sur les diverses structures, et notamment les équipements des réseaux électriques, très peu d'études portant sur le délestage de la glace (réduction de masse de glace) ont été effectuées. Et ceci malgré l'importance de cette phase dans la conception des lignes aériennes subissant le givrage atmosphérique. En effet, la compréhension du processus de délestage est nécessaire pour l'analyse du comportement de ces structures sous l'effet du givre et du verglas et pour le choix des méthodes et protocoles de mitigation.
Cette recherche est divisée en deux grandes parties : la première est le développement d'un modèle mathématique à deux dimensions permettant de prédire la forme du manchon de glace accumulé sur un câble ainsi que le taux du délestage par fonte naturelle sous des conditions météorologiques bien définies comme la vitesse du vent, la température de l'air et l'épaisseur radiale de glace. La deuxième partie consiste à effectuer des tests en laboratoire afin de valider le modèle numérique.
La méthode des éléments finis de frontière a été utilisée dans le modèle mathématique car elle s'adapte bien au problème de changement de phase (fonte de la glace). Cette méthode est basée sur la combinaison des équations intégrales classiques et du concept de la méthode des éléments finis. La méthode des éléments finis de frontière permet d'approximer la frontière d'un domaine continu par un ensemble de sous domaines. Dans ce travail, la frontière de la glace a été discrétisée par des éléments linéaires et le domaine câble-glace par des éléments triangulaires. Grâce, à l'introduction de la fonction de Green et des conditions frontières, il a été possible de produire un système d'équations linéaires pour déterminer la distribution de la ni température dans le dépôt de glace, la vitesse de fonte et la forme du manchon de glace. Finalement, le modèle mathématique développé tient compte des deux types de conditions frontières, soit Fourier et Newman.
Les échantillons de glace atmosphérique sont formés en laboratoire sous des conditions atmosphériques contrôlées. Les tests expérimentaux ont été réalisés avec les équipements de recherche de la CIGELE dont les laboratoires sont situés à l'Université du Québec à Chicoutimi. La glace formée est un givre dur dont la masse volumique est d'environ 880 kg/m3 ; elle est formée à partir de gouttelettes surfondues emportées par un vent de vitesse moyenne égale à 5 m/s et projetées sur un cylindre lisse représentant le câble. La température de l'air dans la chambre climatique pendant la phase d'accumulation est égale à -10 °C, et deux épaisseurs radiales de glace ont été formées soit 10 et 25 mm. Le diamètre volumique moyen des gouttelettes, la teneur en eau ainsi que le coefficient de captation ont été également mesurés. À l'aide de ces données, la phase d'accumulation fut caractérisée.
Les tests expérimentaux en laboratoire ont été divisés en trois parties : le délestage par fonte en absence et en présence du vent et quelques tentatives sur le délestage par sublimation. L'évaluation de la quantité de glace fondue dans le cas du délestage par fonte en absence du vent a été effectuée à l'aide d'un système de capteurs de force. Par contre, dans les deux autres cas, la quantité de glace fondue a été mesurée par pesée à l'aide d'une balance à palettes.
La vitesse de fonte observée dans le cas du délestage par fonte en absence du vent fut de l'ordre de 0,53 kg/m2h. Ce résultat est valide dans le cas où la température de l'air est égale à 9 °C et l'épaisseur radiale initiale est 11 mm.
Dans le cas du délestage par fonte en présence du vent, une combinaison entre trois vitesses de vent (10, 20 et 30 m/s) et deux épaisseurs radiales initiales de glace (10 et 25 mm) fut testée. La durée des expériences a été toujours fixée à 2 heures et la glace fut mesurée à chaque 30 minutes. Dans le cas où l'épaisseur radiale de glace est de 10 mm, les expériences ont montré que la vitesse de fonte passe de 1,24 à 4,04 kg/m2h lorsque la vitesse de vent varie entre 10 et 30 m/s et la température dans le tunnel réfrigéré est de l'ordre de 2 °C. Ces résultats sont différents (1,53 et 4,35 kg/m2h, respectivement) lorsque l'épaisseur radiale est égale à 25 mm.
Dans le cas du délestage par sublimation, une seule série de tests a été élaborée, soit : 10 mm et 30 m/s. La température de l'air dans le tunnel était de -15°C et la quantité de glace sublimée est relativement faible 0,06 kg/m2h comparée au délestage par fonte.
Finalement, une comparaison entre les formes de glace obtenues expérimentalement et numériquement a permis de constater que le modèle mathématique a pu prédire la forme du manchon de glace lorsque l'épaisseur radiale de la glace est égale à 10 mm et les vitesses du vent sont (10, 20 et 30 m/s). De même, le modèle numérique a pu prédire la forme du manchon de glace lorsque l'épaisseur radiale de la glace est égale à 25 mm et les vitesses du vent sont (10 et 20 m/s). Par contre, le modèle n'est pas en mesure de prédire la forme du manchon de glace lorsque l'épaisseur radiale est égale à 25 mm et la vitesse du vent est 30 m/s.
|
429 |
Interaction rupture-flambage, le cas du "splitting" de tube métallique : approche expérimentale et numériqueTran, Dinh Cuong 19 July 2012 (has links) (PDF)
Lorsqu'on découpe un feuillard à l'aide d'un outil, ou lorsqu'on découpe un tube selon son axe, au fur et à mesure que l'on propage la fissure qui traduit la découpe il arrive que des ondulations de flambage perturbent les deux bords libres générés par la propagation de la fissure. Cette étude vise à analyser les origines de ces ondulations. Nous avons mené une campagne expérimentale, dans laquelle des tubes en acier inox avec différentes géométries (rayon/épaisseur) sont " découpés " selon une génératrice. Une instrumentation adéquate, couplant des mesures ponctuelles, à l'aide de jauges de déformation, et une méthode champ par corrélation d'image, nous a permis de correctement mettre en exergue la phénoménologie, en particulier les cinématiques induites à l'échelle géométrique de la fissure (front de fissure) ainsi qu'à l'échelle du tube, avec les longueurs d'onde de flambage observées à l'aval de la fissure. La modélisation numérique menée en non linéaire géométrique (flambage), matériau (déchirure ductile), et conditions aux limites (contact) est aussi abordée à l'aide du code de calcul Abaqus/Standard. Pour la gestion de la propagation de la fissure, deux modèles de rupture sont proposés. Le premier modèle dit zone cohésive est développé et implanté dans le code Abaqus via la subroutine UEL. Pour la deuxième modélisation, nous avons utilisé le modèle dit " d'endommagement ductile " du code Abaqus. La modélisation via des éléments massifs ou des éléments coques volumiques ainsi que l'utilisation de ces modèles de rupture permettent de corroborer les observations expérimentales. Ces travaux montrent que l'augmentation de la charge inhérente au déplacement de l'outil de " découpe ", induit une extension dans la direction circonférentielle et donc une striction dans la direction radiale amenant finalement la rupture. Lors de la rupture, un " sillage plastique " apparait, relativement large, près et parallèle aux bords de la fissure. " Confiné " par les autres parties du tube qui restent élastiques, des contraintes de compression axiale résiduelles apparaissent dans ce sillage plastique, à l'aval de la fissure, leur intensité est suffisante pour produire les ondulations des bords libres qui traduisent un flambage local. Les contraintes résiduelles liées à l'opération de découpe induisent donc le flambage.
|
430 |
Apport du multi-échelle dans l'étude de la durabilité des matériaux de chausséesHammoum, Ferhat 03 March 2010 (has links) (PDF)
Dès ma thèse de doctorat, je me suis intéressé au comportement des géomatériaux et au développement d'outils de modélisation et de caractérisation des matériaux hétérogènes et nonlinéaires. Ma double formation (matériaux et mécanique) m'a permis de travailler sur plusieurs types de matériaux doués de propriétés intéressantes et largement utilisés en génie civil tant au niveau du sous-sol (géomatériaux) qu'au niveau de la structure elle-même (bois, granulats, bitume). Ces matériaux constituent non seulement le terrain d'expression pour de nombreuses disciplines scientifiques comme la science des matériaux, la physico-chimie, la mécanique et la rhéologie mais également un vecteur de développement économique et social. - Période doctorale : Les grandes déformations des matériaux inélastiques anisotropes ; - Période post-doctoral : Le séchage sous vide du bois : Pourquoi et comment ? ; - Période professionnelle . La durabilité des matériaux de chaussées (apport du multi-échelle).
|
Page generated in 0.2581 seconds