Spelling suggestions: "subject:"métaheuristiques biomimétique"" "subject:"heuristique biomimétique""
1 |
Contributions aux Modèles de Markov Cachés : métaheuristiques d'apprentissage, nouveaux modèles et visualisation de dissimilaritéAupetit, Sébastien 30 November 2005 (has links) (PDF)
Dans ce travail de thèse, nous présentons plusieurs contributions visant à améliorer l'utilisation des modèles de Markov cachés (MMC) dans les systèmes d'intelligence artificielle. Nous nous sommes concentrés sur trois objectifs : l'amélioration de l'apprentissage de MMC, l'expérimentation d'un nouveau type de MMC et la visualisation de dissimilarité pour mieux comprendre les interactions entre MMC. Dans la première partie, nous proposons, évaluons et comparons plusieurs nouvelles applications<br />de métaheuristiques biomimétiques classiques (les algorithmes génétiques, l'algorithme de fourmis artificielles API et l'optimisation par essaim particulaire) au problème de l'apprentissage de MMC. Dans la<br />deuxième partie, nous proposons un nouveau type de modèle de Markov caché, appelé modèle Markov caché à substitutions de symboles (MMCSS). Un MMCSS permet d'incorporer des connaissances a priori dans le processus d'apprentissage et de reconnaissance. Les premières expérimentations de ces modèles sur des images démontrent leur intérêt. Dans la troisième partie, nous proposons une nouvelle méthode de représentation de dissimilarité appelée matrice de scatterplots pseudo-euclidienne (MSPE), permettant de mieux comprendre les interactions entre des MMC. Cette MSPE est construite à partir<br />d'une technique que nous nommons analyse en composantes principales à noyau indéfini (ACPNI). Nous terminons par la présentation de la bibliothèque HMMTK, développée au cours de ce travail. Cette dernière intègre des mécanismes de parallélisation et les algorithmes développés au cours de la thèse.
|
Page generated in 0.0933 seconds