1 |
Conception et estimation d'un modèle DSGE pour la prévision macroéconomique : un petit modèle d'économie ouverte pour le Cameroun / Design and estimating a DSGE model for macroeconomic forecasting : a small open economy model for CamerounMfouapon, Alassa 10 December 2015 (has links)
Cette thèse propose une analyse de la dynamique macroéconomique de l’économie camerounaise. On commence par une analyse quantitative générale du cycle des affaires au Cameroun, fondée sur des données macroéconomiques annuelles que nous avons nous-mêmes assemblées. Cette première exploration laisse apparaître un certain nombre de caractéristiques qui se prêtent bien à une modélisation de type néo-keynesien. Nous construisons alors un modèle dynamique stochastique d’équilibre général (DSGE) de l’économie camerounaise. Ce modèle comporte les blocs de construction de modèles DSGE néo-keynésiens standards (par exemple, la rigidité des prix et des salaires des rigidités, et des coûts d'ajustement), mais il inclut également un certain nombre de caractéristiques spécifiques (telles que l'exportation des matières premières et les revenus du pétrole entre autre) dont on montre qu’elles jouent un rôle important dans la dynamique de l'économie camerounaise. Le modèle est estimé et évalué selon une approche bayésienne. La performance du modèle DSGE en termes de prévision est comparée à celle d’un modèle de marche aléatoire, à celle d’un modèle vectoriel auto-régressif (VAR) et, enfin, à celle d’un modèle vectoriel auto-régressif de type Bayesien (BVAR). Nous trouvons que, le modèle DSGE est plus précis en matière de prévision au moins dans un horizon de court-terme. Pour ce qui est des fluctuations macroéconomiques, les chocs des prix des produits de base génèrent une expansion de la production, une augmentation de l'emploi et une baisse de l'inflation tandis que des chocs liés aux prix du pétrole ont un impact direct sur le coût marginal de production qui augmente et provoque une augmentation de l'inflation en même temps que production et emploi baissent. Notons que, les chocs extérieurs et les chocs d'offre domestiques représentent une grande part des fluctuations de la production et de l'investissement. Aussi, l'évolution de la production sur l'ensemble de l'échantillon est dominée par le choc de prix des matières premières et le choc des prix du pétrole. / This thesis aims at analyzing the macroeconomic dynamics of the Cameroonian economy. It begins with a quantitative analysis of the business cycle in Cameroon, based on annual macroeconomic data, especially gathered for this purpose. This preliminary inquiry highlights a number of features that can be accounted for in a new-keynesian modelling framework. A dynamic stochastic general equilibrium (DSGE) model of the new-keynesian family is thus constructed as a mean of describing the salient feautures of the Cameroonian economy. It has the traditional blocks of new-keynesian DSGE models (Sticky prices and wages, adjustment costs, etc). But it also accounts for a number of characteristics of the Cameroonian economy that are shown to be influential in the dynamics of the cameroonian economy (e.g. oil revenues or primary goods exports). The model is then estimated and evaluated, based on a Bayesian approach. Its forecasting performance is also assessed through comparison to the performances of a random walk model, a vector autoregressive (VAR) model and a Bayesian VAR (BVAR) model. It turns out that, at least for short horizons, the DSGE model shows the highest perfromance. As to macroeconomic fluctuations, the estimated model suggests that commodity price shocks generate an output expansion, an increase in employment and a fall in inflation. In addition, oil price shocks have a direct impact on marginal costs which increase and provoke a rising in inflation while output and employment tend to fall. Foreign shoks and domestic supply shocks account for a large share of output and investment fluctuations. The evolution of output over the whole sample is dominated by commodity price shocks and oil price shocks as one would expect.
|
2 |
Revisiting stormwater quality conceptual models in a large urban catchment : Online measurements, uncertainties in data and models / Révision des modèles conceptuels de qualité des eaux pluviales sur un grand bassin versant urbain : Mesures en continue, incertitudes sur les données et les modèlesSandoval Arenas, Santiago 05 December 2017 (has links)
Les modèles de Rejets Urbains par Temps de Pluie (MRUTP) de Matières en Suspension (MES) dans les systèmes d’assainissement urbains sont essentiels pour des raisons scientifiques, environnementales, opérationnelles et réglementaires. Néanmoins, les MRUTP ont été largement mis en question, surtout pour reproduire des données mesurées en continu à l’exutoire des grands bassins versants. Dans cette thèse, trois limitations potentielles des MRUTP traditionnels ont été étudiées dans un bassin versant de 185 ha (Chassieu, France), avec des mesures en ligne de 365 événements pluvieux : a) incertitudes des données dû aux conditions sur le terrain, b) incertitudes dans les modèles hydrologiques et mesures de pluie et c) incertitudes dans les structures traditionnelles des MRUTP. Ces aspects sont approfondis dans six apports séparés, dont leurs résultats principaux peuvent être synthétisés comme suites : a) Acquisition et validation des données : (i) quatre stratégies d’échantillonnage pendant des événements pluvieux sont simulées et évaluées à partir de mesures en ligne de MES et débit. Les intervalles d’échantillonnage recommandés sont de 5 min, avec des erreurs moyennes entre 7 % et 20 % et des incertitudes sur ces erreurs d’environ 5 %, selon l’intervalle d’échantillonnage; (ii) la probabilité de sous-estimation de la concentration moyenne dans la section transversale du réseau est estimée à partir de deux méthodologies. Une méthodologie montre des sous-estimations de MES plus réelles (vers 39 %) par apport à l'autre (vers 269 %). b) Modèles hydrologiques et mesures de pluie : (iii) une stratégie d’estimation de paramètres d’un modèle conceptuel pluie-débit est proposée, en analysant la variabilité des paramètres optimaux obtenus à partir d’un calage Bayésien évènement-par-évènement; (iv) une méthode pour calculer les précipitations moyennes sur un bassin versant est proposée, sur la base du même modèle hydrologique et les données de débit. c) MRUTP (pollutographes) : (v) la performance de modélisation à partir du modèle traditionnel courbe d’étalonnage (RC) a été supérieur aux différents modèles linéaires de fonctions de transfert (TF), surtout en termes de parcimonie et précision des simulations. Aucune relation entre les potentielles erreurs de mesure de la pluie et les conditions hydrologiques définies en (iii) et (iv) avec les performances de RC et TFs n’a pu être établie. Des tests statistiques renforcent que l’occurrence des évènements non-représentables par RC ou TF au cours de temps suit une distribution aléatoire (indépendante de la période sèche précédente); (vi) une méthode de reconstruction Bayésienne de variables d’état virtuelles indique que des processus potentiellement manquants dans une description RC sont ininterprétables en termes d’un unique état virtuel de masse disponible dans le bassin versant qui diminue avec le temps, comme nombre de modèles traditionnels l’ont supposé. / Total Suspended Solids (TSS) stormwater models in urban drainage systems are often required for scientific, legal, environmental and operational reasons. However, these TSS stormwater traditional model structures have been widely questioned, especially when reproducing data from online measurements at the outlet of large urban catchments. In this thesis, three potential limitations of traditional TSS stormwater models are analyzed in a 185 ha urban catchment (Chassieu, Lyon, France), by means 365 rainfall events monitored online: a) uncertainties in TSS data due to field conditions; b) uncertainties in hydrological models and rainfall measurements and c) uncertainties in the stormwater quality model structures. These aspects are investigated in six separate contributions, whose principal results can be summarized as follows: a) TSS data acquisition and validation: (i) four sampling strategies during rainfall events are simulated and evaluated by online TSS and flow rate measurements. Recommended sampling time intervals are of 5 min, with average sampling errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, depending on the sampling interval; (ii) the probability of underestimating the cross section mean TSS concentration is estimated by two methodologies. One method shows more realistic TSS underestimations (about 39 %) than the other (about 269 %). b) Hydrological models and rainfall measurements: (iii) a parameter estimation strategy is proposed for conceptual rainfall-runoff model by analyzing the variability of the optimal parameters obtained by single-event Bayesian calibrations, based on clusters and graphs representations. The new strategy shows more performant results in terms of accuracy and precision in validation; (iv) a methodology aimed to calculate “mean” areal rainfall estimation is proposed, based on the same hydrological model and flow rate data. Rainfall estimations by multiplying factors over constant-length time window and rainfall zero records filled with a reverse model show the most satisfactory results compared to further rainfall estimation models. c) Stormwater TSS pollutograph modelling: (v) the modelling performance of the traditional Rating Curve (RC) model is superior to different linear Transfer Function models (TFs), especially in terms of parsimony and precision of the simulations. No relation between the rainfall corrections or hydrological conditions defined in (iii) and (iv) with performances of RC and TFs could be established. Statistical tests strengthen that the occurrence of events not representable by the RC model in time is independent of antecedent dry weather conditions; (vi) a Bayesian reconstruction method of virtual state variables indicate that potential missing processes in the RC description are hardly interpretable as a unique state of virtual available mass over the catchment decreasing over time, as assumed by a great number of traditional models.
|
3 |
Améliorer la compréhension du cortex visuel à l'aide de techniques de classificationMichel, Vincent 15 December 2010 (has links) (PDF)
Dans ce mémoire, nous présentons différentes méthodes d'apprentissage statistique qui peuvent être utilisées pour comprendre le code neuronal des fonctions cognitives, en se basant sur des données d'Imagerie par Résonance Magnétique fonctionnelle du cerveau. Plus particulièrement, nous nous intéressons à l'´etude de la localisation spatiale des entités impliquées dans le codage, et leur influence respective dans le processus cognitif. Dans cette étude, nous nous focalisons principalement sur l'étude du cortex visuel. Dans la première partie de ce mémoire, nous introduisons les notions d'architecture fonctionnelle cérébrale, de codage neuronal et d'imagerie fonctionnelle. Nous étudions ensuite les limites de l'approche classique d'analyse des données d'IRMf pour l'étude du codage neuronal, et les différents avantages apportées par une méthode d'analyse récente, l'inférence inverse. Enfin, nous détaillons les méthodes d'apprentissage statistique utilisées dans le cadre de l'inférence inverse, et nous les évaluons sur un jeu de données réelles. Cette étude permet de mettre en évidence certaines limitations des approches classiquement utilisées, que cette thèse vise à résoudre. En particulier, nous nous intéressons à l'intégration de l'information sur la structure spatiale des données, au sein d'approches d'apprentissage statistique. Dans la seconde partie de ce mémoire, nous décrivons les trois principales contributions de cette thèse. Tout d'abord, nous introduisons une approche Bayésienne pour la régularisation parcimonieuse, qui généralise au sein d'un même modèle plusieurs approches de références en régularisation Bayésienne. Ensuite nous proposons un algorithme de coalescence supervisé (supervised clustering) qui tient compte de l 'information spatiale contenue dans les images fonctionnelles. Les cartes de poids résultantes sont facilement interprétables, et cette approche semble être bien adaptée au cas de l'inférence entre sujets. La dernière contribution de cette thèse vise à inclure l'information spatiale au sein d'un modèle de régularisation. Cette régularisation peut alors être utilisée dans un cadre de régression et de classification, et permet d'extraire des ensembles connexes de voxels prédictifs. Cette approche est particulièrement bien adaptée à l'étude de la localisation spatiale du codage neuronal, abordée durant cette thèse.
|
4 |
Étude des fonctions B-splines pour la fusion d'images segmentées par approche bayésienne / Study of B-spline function for fusion of segmented images by Bayesian approachHadrich Ben Arab, Atizez 02 December 2015 (has links)
Dans cette thèse nous avons traité le problème de l'estimation non paramétrique des lois de probabilités. Dans un premier temps, nous avons supposé que la densité inconnue f a été approchée par un mélange de base B-spline quadratique. Puis, nous avons proposé un nouvel estimateur de la densité inconnue f basé sur les fonctions B-splines quadratiques, avec deux méthodes d'estimation. La première est base sur la méthode du maximum de vraisemblance et la deuxième est basée sur la méthode d'estimation Bayésienne MAP. Ensuite, nous avons généralisé notre étude d'estimation dans le cadre du mélange et nous avons proposé un nouvel estimateur du mélange de lois inconnues basé sur les deux méthodes d'estimation adaptées. Dans un deuxième temps, nous avons traité le problème de la segmentation statistique semi supervisée des images en se basant sur le modèle de Markov caché et les fonctions B-splines. Nous avons montré l'apport de l'hybridation du modèle de Markov caché et les fonctions B-splines en segmentation statistique bayésienne semi supervisée des images. Dans un troisième temps, nous avons présenté une approche de fusion basée sur la méthode de maximum de vraisemblance, à travers l'estimation non paramétrique des probabilités, pour chaque pixel de l'image. Nous avons ensuite appliqué cette approche sur des images multi-spectrales et multi-temporelles segmentées par notre algorithme non paramétrique et non supervisé. / In this thesis we are treated the problem of nonparametric estimation probability distributions. At first, we assumed that the unknown density f was approximated by a basic mixture quadratic B-spline. Then, we proposed a new estimate of the unknown density function f based on quadratic B-splines, with two methods estimation. The first is based on the maximum likelihood method and the second is based on the Bayesian MAP estimation method. Then we have generalized our estimation study as part of the mixture and we have proposed a new estimator mixture of unknown distributions based on the adapted estimation of two methods. In a second time, we treated the problem of semi supervised statistical segmentation of images based on the hidden Markov model and the B-sline functions. We have shown the contribution of hybridization of the hidden Markov model and B-spline functions in unsupervised Bayesian statistical image segmentation. Thirdly, we presented a fusion approach based on the maximum likelihood method, through the nonparametric estimation of probabilities, for each pixel of the image. We then applied this approach to multi-spectral and multi-temporal images segmented by our nonparametric and unsupervised algorithm.
|
5 |
Estimation de paramètres en exploitant les aspects calculatoires et numériquesKadje Kenmogne, Romain 08 1900 (has links)
No description available.
|
6 |
Estimations non paramétriques par noyaux associés multivariés et applications / Nonparametric estimation by multivariate associated kernels and applicationsSomé, Sobom Matthieu 16 November 2015 (has links)
Dans ce travail, l'approche non-paramétrique par noyaux associés mixtes multivariés est présentée pour les fonctions de densités, de masse de probabilité et de régressions à supports partiellement ou totalement discrets et continus. Pour cela, quelques aspects essentiels des notions d'estimation par noyaux continus (dits classiques) multivariés et par noyaux associés univariés (discrets et continus) sont d'abord rappelés. Les problèmes de supports sont alors révisés ainsi qu'une résolution des effets de bords dans les cas des noyaux associés univariés. Le noyau associé multivarié est ensuite défini et une méthode de leur construction dite mode-dispersion multivarié est proposée. Il s'ensuit une illustration dans le cas continu utilisant le noyau bêta bivarié avec ou sans structure de corrélation de type Sarmanov. Les propriétés des estimateurs telles que les biais, les variances et les erreurs quadratiques moyennes sont également étudiées. Un algorithme de réduction du biais est alors proposé et illustré sur ce même noyau avec structure de corrélation. Des études par simulations et applications avec le noyau bêta bivarié avec structure de corrélation sont aussi présentées. Trois formes de matrices des fenêtres, à savoir, pleine, Scott et diagonale, y sont utilisées puis leurs performances relatives sont discutées. De plus, des noyaux associés multiples ont été efficaces dans le cadre de l'analyse discriminante. Pour cela, on a utilisé les noyaux univariés binomial, catégoriel, triangulaire discret, gamma et bêta. Par la suite, les noyaux associés avec ou sans structure de corrélation ont été étudiés dans le cadre de la régression multiple. En plus des noyaux univariés ci-dessus, les noyaux bivariés avec ou sans structure de corrélation ont été aussi pris en compte. Les études par simulations montrent l'importance et les bonnes performances du choix des noyaux associés multivariés à matrice de lissage pleine ou diagonale. Puis, les noyaux associés continus et discrets sont combinés pour définir les noyaux associés mixtes univariés. Les travaux ont aussi donné lieu à la création d'un package R pour l'estimation de fonctions univariés de densités, de masse de probabilité et de régression. Plusieurs méthodes de sélections de fenêtres optimales y sont implémentées avec une interface facile d'utilisation. Tout au long de ce travail, la sélection des matrices de lissage se fait généralement par validation croisée et parfois par les méthodes bayésiennes. Enfin, des compléments sur les constantes de normalisations des estimateurs à noyaux associés des fonctions de densité et de masse de probabilité sont présentés. / This work is about nonparametric approach using multivariate mixed associated kernels for densities, probability mass functions and regressions estimation having supports partially or totally discrete and continuous. Some key aspects of kernel estimation using multivariate continuous (classical) and (discrete and continuous) univariate associated kernels are recalled. Problem of supports are also revised as well as a resolution of boundary effects for univariate associated kernels. The multivariate associated kernel is then defined and a construction by multivariate mode-dispersion method is provided. This leads to an illustration on the bivariate beta kernel with Sarmanov's correlation structure in continuous case. Properties of these estimators are studied, such as the bias, variances and mean squared errors. An algorithm for reducing the bias is proposed and illustrated on this bivariate beta kernel. Simulations studies and applications are then performed with bivariate beta kernel. Three types of bandwidth matrices, namely, full, Scott and diagonal are used. Furthermore, appropriated multiple associated kernels are used in a practical discriminant analysis task. These are the binomial, categorical, discrete triangular, gamma and beta. Thereafter, associated kernels with or without correlation structure are used in multiple regression. In addition to the previous univariate associated kernels, bivariate beta kernels with or without correlation structure are taken into account. Simulations studies show the performance of the choice of associated kernels with full or diagonal bandwidth matrices. Then, (discrete and continuous) associated kernels are combined to define mixed univariate associated kernels. Using the tools of unification of discrete and continuous analysis, the properties of the mixed associated kernel estimators are shown. This is followed by an R package, created in univariate case, for densities, probability mass functions and regressions estimations. Several smoothing parameter selections are implemented via an easy-to-use interface. Throughout the paper, bandwidth matrix selections are generally obtained using cross-validation and sometimes Bayesian methods. Finally, some additionnal informations on normalizing constants of associated kernel estimators are presented for densities or probability mass functions.
|
Page generated in 0.0687 seconds