• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and Functional Interrogation of Single Amino Acid Residues in Fluorescent Proteins

January 2012 (has links)
abstract: Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties of the proteins derived from GFP allows increased complexity of experiments and consequently, information content of the data acquired. The importance of arginine-96 in GFP has been widely discussed. It has been established as vital to the kinetics of chromophore maturation and to the overall fold of GFP before post-translational self-modification. Its value during chromophore maturation has been demonstrated by mutational studies and a hypothesis proposed for its catalytic function. A strategy is described herein to determine its pKa value via NMR to determine whether Arg96 possesses the chemical capacity to function as a general base during GFP chromophore biosynthesis. Förster resonance energy transfer (FRET) techniques commonly employ Enhanced Cyan Fluorescent Proteins (ECFPs) and their derivatives as donor fluorophores useful in real-time, live-cell imaging. These proteins have a tryptophan-derived chromophore that emits light in the blue region of the visible spectrum. Most ECFPs suffer from fluorescence instability, which, coupled with their low quantum yield, makes data analysis unreliable. The structural heterogeneity of these proteins also results in undesirable photophysical characteristics. Recently, mCerulean3, a ten amino acid mutant of ECFP, was introduced as an optimized FRET-donor protein (1). The amino acids changed include a mobile residue, Asp148, which has been mutated to a glycine in the new construct, and Thr65 near the chromophore has been mutated to a serine, the wild-type residue at this location. I have solved the x-ray crystal structure of mCerulean3 at low pH and find that the pH-dependent isomerization has been eliminated. The chromophore is in the trans-conformation previously observed in Cerulean at pH 8. The mutations that increase the quantum yield and improve fluorescence brightness result in a stable, bright donor fluorophore well-suited for use in quantitative microscopic imaging. / Dissertation/Thesis / Ph.D. Chemistry 2012

Page generated in 0.0165 seconds