• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ISOLATION AND CHARACTERIZATION OF THE FOUR ARABIDOPSIS THALIANA POLY(A) POLYMERASE GENES

Meeks, Lisa Renee 01 January 2005 (has links)
Poly(A) tail addition to pre-mRNAs is a highly coordinated and essential step in mRNA maturation involving multiple cis- and trans-acting factors. The trans-acting factor, poly(A) polymerase (PAP) plays an essential role in the polyadenylation of mRNA precursors. The Arabidopsis thaliana genome contains four putative PAP genes. We have found, using in silico analysis and transgenic plants expressing GUS under the control of the four PAP promoters, that each of these genes is expressed in overlapping, yet unique patterns. This gives rise to the possibility that these genes are not redundant and may be essential for plant survival. To further test this, inducible RNAi and T-DNA mutagenized plants were obtained and analyzed. Plants lacking all, or most, of each PAP gene product, due to RNAi induction, were not viable at any of the stages of plant growth tested. Furthermore, T-DNA PCR analysis determined that no plants containing a homozygous mutation, were viable. This data reveals that lack of any of the four PAP gene products has a significant effect on the plants ability of survive, thus indicating that each PAP gene is essential. Finally, transient expression experiments with each of the full length PAP cDNAs fused to GFP showed that the PAP I, PAP II and PAP IV gene products are localized throughout the nucleus and within nuclear speckles. The cellular localization of PAP III could not be determined.
2

CHARACTERIZATION OF PLANT POLYADENYLATION TRANSACTING FACTORS-FACTORS THAT MODIFY POLY(A) POLYMERSE ACTIVITY

Forbes, Kevin Patrick 01 January 2005 (has links)
Plant polyadenylation factors have proven difficult to purify and characterize, owing to the presence of excessive nuclease activity in plant nuclear extracts, thereby precluding the identification of polyadenylation signal-dependent processing and polyadenylation in crude extracts. As an alternative approach to identifying such factors, a screen was conducted for activities that inhibit the non-specific activity of plant poly(A) polymerases (PAP). One such factor (termed here as Putative Polyadenylation Factor B, or PPF-B) was identified in a screen of DEAE-Sepharose column fractions using a partially purified preparation of a plant nuclear poly(A) polymerase. This factor was purified to near homogeneity. Surprisingly, in addition to being an effective inhibitor of the nuclear PAP, PPF-B inhibited the activity of a chloroplast PAP. In contrast, this factor stimulated the activity of the yeast PAP. Direct assays of ATPase, proteinase, and nuclease activities indicated that inhibition of PAP activity was not due to depletion of substrates or degradation of products of the PAP reaction. The major polypeptide component of PPF-B proved to be a novel linker histone (RSP), which copurified with inhibitory activity by affinity chromatography on DNA-cellulose. The association of inhibitory activity with a linker histone and the spectrum of inhibitory activity, raise interesting possibilities regarding the role of PPF-B in nuclear RNA metabolism. These include a link between DNA damage and polyadenylation, as well as a role for limiting the polyadenylation of stable RNAs in the nucleus and nucleolus. The Arabidopsis genome possesses genes encoding probable homologs of most of the polyadenylation subunits that have been identified in mammals and yeast. Two of these reside on chromosome III and V and have the potential to encode a protein that is related to the yeast and mammalian Fip1 subunit (AtFip1-III and AtFip1-V). These genes are universally expressed in Arabidopsis tissues. AtFip1-V stimulates the non-specific activity of at least one Arabidopsis nuclear PAP, binds RNA, and interacts with other polyadenylation homologs AtCstF77 and AtCPSF30. These studies suggest that AtFip1- V is an authentic polyadenylation factor that coordinates other subunits and plays a role in regulating the activityof PAP in plants.
3

COMPILATION OF mRNA POLYADENYLATION SIGNALS IN ARABIDOPSIS THALIANA REVEALED NEW SIGNAL ELEMENTS AND POTENTIAL SECONDARY STRUCTURES

Loke, Johnny Chee Heng 16 December 2004 (has links)
No description available.

Page generated in 0.1461 seconds