• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 34
  • Tagged with
  • 110
  • 110
  • 110
  • 67
  • 46
  • 46
  • 46
  • 34
  • 31
  • 21
  • 21
  • 21
  • 21
  • 21
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Qualifica a Vibrazioni di Componenti Meccanici: Studio e Verifica di una Procedura di Test Tailoring. / Vibration Qualification Testing: Experimental Evaluation of a Test Tailoring Procedure.

Cipollini, Roberto <1984> 08 May 2013 (has links)
I test di qualifica a vibrazioni vengono usati in fase di progettazione di un componente per verificarne la resistenza meccanica alle sollecitazioni dinamiche (di natura vibratoria) applicate durante la sua vita utile. La durata delle vibrazioni applicate al componente durante la sua vita utile (migliaia di ore) deve essere ridotta al fine di realizzare test fattibili in laboratorio, condotti in genere utilizzando uno shaker elettrodinamico. L’idea è quella di aumentare l’intensità delle vibrazioni riducendone la durata. Esistono diverse procedure di Test Tailoring che tramite un metodo di sintesi definiscono un profilo vibratorio da applicare in laboratorio a partire dalle reali vibrazioni applicate al componente: una delle metodologie più comuni si basa sull’equivalenza del danno a fatica prodotto dalle reali vibrazioni e dalle vibrazioni sintetizzate. Questo approccio è piuttosto diffuso tuttavia all’autore non risulta presente nessun riferimento in letteratura che ne certifichi la validità tramite evidenza sperimentalmente. L’obiettivo dell’attività di ricerca è stato di verificare la validità del metodo tramite una campagna sperimentale condotta su opportuni provini. Il metodo viene inizialmente usato per sintetizzare un profilo vibratorio (random stazionario) avente la stessa durata di un profilo vibratorio non stazionario acquisito in condizioni reali. Il danno a fatica prodotto dalla vibrazione sintetizzata è stato confrontato con quello della vibrazione reale in termini di tempo di rottura dei provini. I risultati mostrano che il danno prodotto dalla vibrazione sintetizzata è sovrastimato, quindi l’equivalenza non è rispettata. Sono stati individuati alcuni punti critici e sono state proposte alcune modifiche al metodo per rendere la teoria più robusta. Il metodo è stato verificato con altri test e i risultati confermano la validità del metodo a condizione che i punti critici individuati siano correttamente analizzati. / Qualification with respect to input vibrations is an important step in the development of a product since it provides fundamental information relative to the product fatigue life. For the sake of test feasibility, environmental vibrations that excite the product during its lifetime (thousand of hours) must be reduced to test profiles suitable for an experimental campaign to be performed in a laboratory (typically by means of an electromechanical shaker). The idea is to increase the amplitude of the input vibrations while decreasing the corresponding duration. Some Test Tailoring procedures exist for the definition of test vibration profiles starting from environmental data properly acquired: one of the most common is based on the equivalence of the fatigue damage caused by both the environmental data and the test profiles. This approach is reasonable and quite widespread: however, in the author’s knowledge, the literature offers no paper dealing with the demonstration of the method reliability based on experimental evidence. In the present thesis, the intense experimental campaign carried out to validate the method (on a proper specimen) is presented. The method is firstly applied to synthesize a test profile (that is random stationary) having the same duration of the non-stationary environmental vibration. The damage potential of the synthesized vibration is then compared to the environmental vibration one, in terms of the specimen time to failure. Results show that the test profile damage potential is highly overestimated and therefore the equivalence is not respected. Some critical issues are pointed out to try to explain and overcome the high error. The method is applied in many other cases and the final results basically confirm the soundness of the method provided that critical issues are properly accounted and compensated for.
62

Model reduction techniques in flexible multibody dynamics with application to engine cranktrain simulation

Ricci, Stefano <1982> 08 May 2013 (has links)
The development of a multibody model of a motorbike engine cranktrain is presented in this work, with an emphasis on flexible component model reduction. A modelling methodology based upon the adoption of non-ideal joints at interface locations, and the inclusion of component flexibility, is developed: both are necessary tasks if one wants to capture dynamic effects which arise in lightweight, high-speed applications. With regard to the first topic, both a ball bearing model and a journal bearing model are implemented, in order to properly capture the dynamic effects of the main connections in the system: angular contact ball bearings are modelled according to a five-DOF nonlinear scheme in order to grasp the crankshaft main bearings behaviour, while an impedance-based hydrodynamic bearing model is implemented providing an enhanced operation prediction at the conrod big end locations. Concerning the second matter, flexible models of the crankshaft and the connecting rod are produced. The well-established Craig-Bampton reduction technique is adopted as a general framework to obtain reduced model representations which are suitable for the subsequent multibody analyses. A particular component mode selection procedure is implemented, based on the concept of Effective Interface Mass, allowing an assessment of the accuracy of the reduced models prior to the nonlinear simulation phase. In addition, a procedure to alleviate the effects of modal truncation, based on the Modal Truncation Augmentation approach, is developed. In order to assess the performances of the proposed modal reduction schemes, numerical tests are performed onto the crankshaft and the conrod models in both frequency and modal domains. A multibody model of the cranktrain is eventually assembled and simulated using a commercial software. Numerical results are presented, demonstrating the effectiveness of the implemented flexible model reduction techniques. The advantages over the conventional frequency-based truncation approach are discussed.
63

Synthesis of Hand Exoskeletons for the Rehabilitation of Post-Stroke Patients

Mozaffari Foumashi, Mohammad <1983> 08 May 2013 (has links)
This dissertation presents the synthesis of a hand exoskeleton (HE) for the rehabilitation of post-stroke patients. Through the analysis of state-of-the-art, a topological classification was proposed. Based on the proposed classification principles, the rehabilitation HEs were systematically analyzed and classified. This classification is helpful to both understand the reason of proposing certain solutions for specific applications and provide some useful guidelines for the design of a new HE, that was actually the primary motivation of this study. Further to this classification, a novel rehabilitation HE was designed to support patients in cylindrical shape grasping tasks with the aim of recovering the basic functions of manipulation. The proposed device comprises five planar mechanisms, one per finger, globally actuated by two electric motors. Indeed, the thumb flexion/extension movement is controlled by one actuator whereas a second actuator is devoted to the control of the flexion/extension of the other four fingers. By focusing on the single finger mechanism, intended as the basic model of the targeted HE, the feasibility study of three different 1 DOF mechanisms are analyzed: a 6-link mechanism, that is connected to the human finger only at its tip, an 8-link and a 12-link mechanisms where phalanges and articulations are part of the kinematic chain. The advantages and drawbacks of each mechanism are deeply analyzed with respect to targeted requirements: the 12-link mechanism was selected as the most suitable solution. The dimensional synthesis based on the Burmester theory as well as kinematic and static analyses were separately done for all fingers in order to satisfy the desired specifications. The HE was finally designed and a prototype was built. The experimental results of the first tests are promising and demonstrate the potential for clinical applications of the proposed device in robot-assisted training of the human hand for grasping functions.
64

Inverse Static Analysis of Massive Parallel Arrays of Three-State Actuators via Artificial Intelligence

Pasila, Felix <1974> 08 May 2013 (has links)
Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.
65

Non-Linear Analysis and Design of Synchronous Bearingless Multiphase Permanent Magnet Machines and Drives

Serri, Stefano <1973> 09 July 2013 (has links)
A two-dimensional model to analyze the distribution of magnetic fields in the airgap of a PM electrical machines is studied. A numerical algorithm for non-linear magnetic analysis of multiphase surface-mounted PM machines with semi-closed slots is developed, based on the equivalent magnetic circuit method. By using a modular structure geometry, whose the basic element can be duplicated, it allows to design whatever typology of windings distribution. In comparison to a FEA, permits a reduction in computing time and to directly changing the values of the parameters in a user interface, without re-designing the model. Output torque and radial forces acting on the moving part of the machine can be calculated. In addition, an analytical model for radial forces calculation in multiphase bearingless Surface-Mounted Permanent Magnet Synchronous Motors (SPMSM) is presented. It allows to predict amplitude and direction of the force, depending on the values of torque current, of levitation current and of rotor position. It is based on the space vectors method, letting the analysis of the machine also during transients. The calculations are conducted by developing the analytical functions in Fourier series, taking all the possible interactions between stator and rotor mmf harmonic components into account and allowing to analyze the effects of electrical and geometrical quantities of the machine, being parametrized. The model is implemented in the design of a control system for bearingless machines, as an accurate electromagnetic model integrated in a three-dimensional mechanical model, where one end of the motor shaft is constrained to simulate the presence of a mechanical bearing, while the other is free, only supported by the radial forces developed in the interactions between magnetic fields, to realize a bearingless system with three degrees of freedom. The complete model represents the design of the experimental system to be realized in the laboratory.
66

Design of a new harrow type wool transport mechanism to reduce fibre entanglement

Kayumov, Juramirza <1978> 24 April 2015 (has links)
The wool is entangled at several stages of its processing. In the conventional scouring machines, the prongs or the rakes agitate the wool and lead the fiber entanglement. Several scouring systems have been commercialized in order to reduce the fiber entanglement. In spite of the existing technologies, the conventional scouring machines are widely used in wool processing. In this thesis, a new approach for the harrow type wool transport mechanism has been introduced. The proposed mechanism has been designed based on the motion of the conventional harrow type wool transport mechanism by exploiting new synthesis concepts. The developed structure has been synthesized based on the Hrones and Nelson's "Atlas of four bar linkages". The four bar linkage has been applied for the desired trajectory of the developed wool transport mechanism. The prongs of the developed mechanism immerse the wool into the scouring liquor and gently propel forward toward the end of the machine with approximately straight line motion in a certain length instead of circular or elliptical motion typical of the conventional machines.
67

Grid Connected Doubly Fed Induction Generator Based Wind Turbine under LVRT

Subramanian, Chandrasekaran <1983> 10 March 2014 (has links)
This project concentrates on the Low Voltage Ride Through (LVRT) capability of Doubly Fed Induction Generator (DFIG) wind turbine. The main attention in the project is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. It provides also an overview on the interaction between variable speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of this project is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behavior of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by Transmission System Operator in the power system simulation toolbox Digsilent, Matlab/Simulink and PLECS.
68

New mechanisms for modelling the motion of the human ankle complex

Baldisserri, Benedetta <1984> 27 April 2012 (has links)
The relevance of human joint models was shown in the literature. In particular, the great importance of models for the joint passive motion simulation (i.e. motion under virtually unloaded conditions) was outlined. They clarify the role played by the principal anatomical structures of the articulation, enhancing the comprehension of surgical treatments, and in particular the design of total ankle replacement and ligament reconstruction. Equivalent rigid link mechanisms proved to be an efficient tool for an accurate simulation of the joint passive motion. This thesis focuses on the ankle complex (i.e. the anatomical structure composed of the tibiotalar and the subtalar joints), which has a considerable role in human locomotion. The lack of interpreting models of this articulation and the poor results of total ankle replacement arthroplasty have strongly suggested devising new mathematical models capable of reproducing the restraining function of each structure of the joint and of replicating the relative motion of the bones which constitute the joint itself. In this contest, novel equivalent mechanisms are proposed for modelling the ankle passive motion. Their geometry is based on the joint’s anatomical structures. In particular, the role of the main ligaments of the articulation is investigated under passive conditions by means of nine 5-5 fully parallel mechanisms. Based on this investigation, a one-DOF spatial mechanism is developed for modelling the passive motion of the lower leg. The model considers many passive structures constituting the articulation, overcoming the limitations of previous models which took into account few anatomical elements of the ankle complex. All the models have been identified from experimental data by means of optimization procedure. Then, the simulated motions have been compared to the experimental one, in order to show the efficiency of the approach and thus to deduce the role of each anatomical structure in the ankle kinematic behavior.
69

Diagnosis and Fault detection in Electrical Machines and Drives based on Advanced Signal Processing Techniques

Gritli, Yasser <1975> 11 March 2014 (has links)
In the present thesis, a new methodology of diagnosis based on advanced use of time-frequency technique analysis is presented. More precisely, a new fault index that allows tracking individual fault components in a single frequency band is defined. More in detail, a frequency sliding is applied to the signals being analyzed (currents, voltages, vibration signals), so that each single fault frequency component is shifted into a prefixed single frequency band. Then, the discrete Wavelet Transform is applied to the resulting signal to extract the fault signature in the frequency band that has been chosen. Once the state of the machine has been qualitatively diagnosed, a quantitative evaluation of the fault degree is necessary. For this purpose, a fault index based on the energy calculation of approximation and/or detail signals resulting from wavelet decomposition has been introduced to quantify the fault extend. The main advantages of the developed new method over existing Diagnosis techniques are the following: - Capability of monitoring the fault evolution continuously over time under any transient operating condition; - Speed/slip measurement or estimation is not required; - Higher accuracy in filtering frequency components around the fundamental in case of rotor faults; - Reduction in the likelihood of false indications by avoiding confusion with other fault harmonics (the contribution of the most relevant fault frequency components under speed-varying conditions are clamped in a single frequency band); - Low memory requirement due to low sampling frequency; - Reduction in the latency of time processing (no requirement of repeated sampling operation).
70

Dynamic analysis of the motorcycle chattering behaviour by means of symbolic multibody modelling

Leonelli, Luca <1986> 15 April 2014 (has links)
Aim of this research is the development and validation of a comprehensive multibody motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of road surfaces. A novel parametrization for the general kinematics of the motorcycle is proposed, using a mixed reference-point and relative-coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to efficiently include rigid-ring kinematics as well as road elevation and slope. The equations of motion for the multibody system are derived symbolically and the constraint equations arising from the dependent-coordinate formulation are handled using a projection technique. Therefore the resulting system of equations can be integrated in time domain using a standard ODE algorithm. The model is validated with respect to maneuvers experimentally measured on the race track, showing consistent results and excellent computational efficiency. More in detail, it is also capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, appearing during high speed cornering maneuvers, consists of a self-excited vertical oscillation of both the front and rear unsprung masses in the range of frequency between 17 and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, consistent with the experimentally measured chatter vibration. Finally, the driving mechanism for the self-excitation is highlighted and a physical interpretation is proposed.

Page generated in 0.0687 seconds