1 |
Symmetric functions and Macdonald polynomialsLanger, R. January 2008 (has links)
The ring of symmetric functions Λ, with natural basis given by the Schur functions, arise in many different areas of mathematics. For example, as the cohomology ring of the grassmanian, and as the representation ring of the symmetric group. One may define a coproduct on Λ by the plethystic addition on alphabets. In this way the ring of symmetric functions becomes a Hopf algebra. The Littlewood–Richardson numbers may be viewed as the structure constants for the co-product in the Schur basis. The first part of this thesis, inspired by the umbral calculus of Gian-Carlo Rota, is a study of the co-algebra maps of Λ. The Macdonald polynomials are a somewhat mysterious qt-deformation of the Schur functions. The second part of this thesis contains a proof a generating function identity for the Macdonald polynomials which was originally conjectured by Kawanaka.
|
2 |
Combinatorial Properties of the Hilbert Series of Macdonald PolynomialsNiese, Elizabeth M. 27 April 2010 (has links)
The original Macdonald polynomials P<sub>μ</sub> form a basis for the vector space of symmetric functions which specializes to several of the common bases such as the monomial, Schur, and elementary bases. There are a number of different types of Macdonald polynomials obtained from the original P<sub>μ</sub> through a combination of algebraic and plethystic transformations one of which is the modified Macdonald polynomial H̃<sub>μ</sub>. In this dissertation, we study a certain specialization F̃<sub>μ</sub>(q,t) which is the coefficient of x₁x₂…x<sub>N</sub> in H̃<sub>μ</sub> and also the Hilbert series of the Garsia-Haiman module M<sub>μ</sub>. Haglund found a combinatorial formula expressing F̃<sub>μ</sub> as a sum of n! objects weighted by two statistics. Using this formula we prove a q,t-analogue of the hook-length formula for hook shapes. We establish several new combinatorial operations on the fillings which generate F̃<sub>μ</sub>. These operations are used to prove a series of recursions and divisibility properties for F̃<sub>μ</sub>. / Ph. D.
|
3 |
Delta conjectures and Theta refinementsVanden Wyngaerd, Anna 19 November 2020 (has links) (PDF)
Dans les années 90 Garsia et Haiman ont introduit le $mathfrak S_n$-module des emph{harmoniques diagonales}, c'est à dire les co-invariants de l'action diagonale du groupe symétrique $mathfrak S_n$ sur les polynômes à deux ensembles de $n$ variables. Ils ont proposé la conjecture selon laquelle le caractère de Frobenius bi-gradué de leur module est $abla e_n$, où $abla$ est un opérateur sur l'anneau des fonction symétriques. En 2002, Haiman prouva cette conjecture. Quelques années plus tard, Haglund, Haiman, Loehr, Remmel et Ulyanov proposèrent une formule combinatoire pour la fonction symétrique $abla e_n$, qu'ils appelèrent la emph{conjecture shuffle}. Les objets combinatoires qui y figurent sont les chemins de Dyck étiquetés. Un raffinement emph{compositionnel} de cette formule fut ensuite proposé par Haglund, Morse et Zabrocki. C'était ce raffinement que Carlsson et Mellit réussirent enfin à montrer en 2018, établissant ainsi le emph{théorème shuffle}. La emph{conjecture Delta} est une paire de formules combinatoires pour la fonction symétrique $Delta'_{e_{n-k-1}}e_n$ en termes des chemins de Dyck étiquetés et décorés, qui généralise le théorème shuffle. Elle fut proposée par Hagund, Remmel et Wilson en 2015 est reste aujourd'hui un problème ouvert. Dans la même publication les auteurs proposèrent une formule pour $Delta_{h_m}Delta'_{e_{n-k-1}}e_n$ en termes de chemins de Dyck partiellement étiquetés et décorés, appelé emph{conjecture Delta généralisée}. Nous proposons un raffinement compositionnel de la conjecture Delta en utilisant des nouveaux opérateurs de fonctions symétriques: les opérateurs Theta. Nous généralisons les arguments combinatoires que Carlsson et Mellit utilisèrent pour la preuve du théorème shuffle au contexte de la conjecture Delta. Nous prouvons également la formule pour $Delta_{h_m} abla e_n$ en termes de chemins de Dyck partiellement étiqueté, c'est à dire le cas $k=0$ de la conjecture Delta généralisée. En 2006, Can et Loehr proposèrent la emph{conjecture carré}, exprimant la fonction symétrique $(-1)^{n-1}abla p_n$ en termes de chemins carrés étiquetés. Sergel montra que le théorème shuffle implique la conjecture carré. Nous généralisons le résultat de Sergel en montrant que une des formules de la conjecture Delta généralisée implique une formule combinatoire de la fonction $(-1)^{n-k}Delta_{h_m}Theta_kp_{n-k}$ e / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
4 |
Cylindric plane partitions, lambda determinant, commutators in semicircular systems / Partitions planes cylindriques, lambda déterminants, les commutateurs dans l’algèbre engendrée par un système semi-circulaireLanger, Robin 06 December 2013 (has links)
Cette thèse se compose de trois parties. La première partie est consacrée aux partitions planes cylindriques, la deuxième aux lambda-déterminants et enfin la troisième aux commutateurs dans les systèmes semi-circulaires. La classe des partitions planes cylindriques est une généralisation naturelle de celle des partitions planes inverses. Borodin a donnée récemment une série génératrice pour les partitions planes cylindriques. Notre premier résultat est une preuve bijective de cette identité utilisant les diagrammes de croissance de Fomin for la correspondance RSK généralisée. Le deuxième résultat est un (q, t)-analogue de la formule de Borodin, qui généralise un résultat d'Okada. Enfin le troisième résultat de la première partie est une description combinatoire explicite du poids de Macdonald intervenant dans cette formule, qui utilise un modèle de chemins non-intersectant pour les partitions planes cylindriques. Les matrices à signes alternants ont ́été découvertes par Robbins et Rumsey alors qu’ils étudiaient les λ-déterminants. Dans la deuxième partie de cette thèse nous démontrons une généralisation à plusieurs paramètres de ce λ-déterminant, généralisant un résultat récent de di Francesco. Comme le λ-déterminant, notre formule est un exemple du phénomène de Laurent. Les systèmes semi-circulaires ont ́été introduits par Voiculescu afin d' ́étudier les algèbres de von Neumann des groupes libres. Dans la troisième partie de la thèse, nous étudions les commutateurs dans l'algèbre engendré par un système semi-circulaire. Nous avons mis en ́évidence une matrice possédant une structure auto-similaire intéressante, qui nous permet de donner une formule explicite pour la projection sur l'espace des commutateurs de degré donnée. En utilisant cette expression, nous donnons une preuve simple du fait que les systèmes semi-circulaires engendrent des facteurs / This thesis is divided into three parts. The first part deals with cylindric plane partitions. The second with lambda-determinants and the third with commutators in semi-circular systems. Cylindric plane partitions may be thought of as a natural generalization of reverse plane partitions. A generating series for the enumeration of cylindric plane partitions was recently given by Borodin. The first result of section one is a new bijective proof of Borodin's identity which makes use of Fomin's growth diagram framework for generalized RSK correspondences. The second result is a (q, t)-analog of Borodin's identity which extends previous work by Okada in the reverse plane partition case. The third result is an explicit combinatorial interpretation of the Macdonald weight occuring in the(q, t)-analog using the non-intersecting lattice path model for cylindric plane partitions. Alternating sign matrices were discovered by Robbins and Rumsey whilst studying λ-determinants. In the second part of this thesis we prove a multi-parameter generalization of the λ-determinant, generalizing a recent result by di Francesco. Like the original λ-determinant, our formula exhibits the Laurent phenomenon. Semicircular systems were first introduced by Voiculescu as a part of his study of von Neumann algebras. In the third part of this thesis we study certain commutator sub algebras of the semicircular system. We find a projection matrix with an interesting self-similar structure. Making use of our projection formula we given an alternative, elementary proof that the semicircular system is a factor
|
Page generated in 0.0731 seconds