Spelling suggestions: "subject:"machine learning inn wireless"" "subject:"machine learning iin wireless""
1 |
3D Massive MIMO and Artificial Intelligence for Next Generation Wireless NetworksShafin, Rubayet 13 April 2020 (has links)
3-dimensional (3D) massive multiple-input-multiple-output (MIMO)/full dimensional (FD) MIMO and application of artificial intelligence are two main driving forces for next generation wireless systems. This dissertation focuses on aspects of channel estimation and precoding for 3D massive MIMO systems and application of deep reinforcement learning (DRL) for MIMO broadcast beam synthesis. To be specific, downlink (DL) precoding and power allocation strategies are identified for a time-division-duplex (TDD) multi-cell multi-user massive FD-MIMO network. Utilizing channel reciprocity, DL channel state information (CSI) feedback is eliminated and the DL multi-user MIMO precoding is linked to the uplink (UL) direction of arrival (DoA) estimation through estimation of signal parameters via rotational invariance technique (ESPRIT). Assuming non-orthogonal/non-ideal spreading sequences of the UL pilots, the performance of the UL DoA estimation is analytically characterized and the characterized DoA estimation error is incorporated into the corresponding DL precoding and power allocation strategy. Simulation results verify the accuracy of our analytical characterization of the DoA estimation and demonstrate that the introduced multi-user MIMO precoding and power allocation strategy outperforms existing zero-forcing based massive MIMO strategies.
In 3D massive MIMO systems, especially in TDD mode, a base station (BS) relies on the uplink sounding signals from mobile stations to obtain the spatial information for downlink MIMO processing. Accordingly, multi-dimensional parameter estimation of MIMO channel becomes crucial for such systems to realize the predicted capacity gains. In this work, we also study the joint estimation of elevation and azimuth angles as well as the delay parameters for 3D massive MIMO orthogonal frequency division multiplexing (OFDM) systems under a parametric channel modeling. We introduce a matrix-based joint parameter estimation method, and analytically characterize its performance for massive MIMO OFDM systems. Results show that antenna array configuration at the BS plays a critical role in determining the underlying channel estimation performance, and the characterized MSEs match well with the simulated ones. Also, the joint parametric channel estimation outperforms the MMSEbased channel estimation in terms of the correlation between the estimated channel and the real channel.
Beamforming in MIMO systems is one of the key technologies for modern wireless communication. Creating wide common beams are essential for enhancing the coverage of cellular network and for improving the broadcast operation for control signals. However, in order to maximize the coverage, patterns for broadcast beams need to be adapted based on the users' movement over time. In this dissertation, we present a MIMO broadcast beam optimization framework using deep reinforcement learning. Our proposed solution can autonomously and dynamically adapt the MIMO broadcast beam parameters based on user' distribution in the network. Extensive simulation results show that the introduced algorithm can achieve the optimal coverage, and converge to the oracle solution for both single cell and multiple cell environment and for both periodic and Markov mobility patterns. / Doctor of Philosophy / Multiple-input-multiple-output (MIMO) is a technology where a transmitter with multiple antennas communicates with one or multipe receivers having multiple antennas. 3- dimensional (3D) massive MIMO is a recently developed technology where a base station (BS) or cell tower with a large number of antennas placed in a two dimensional array communicates with hundreds of user terminals simultaneously. 3D massive MIMO/full dimensional (FD) MIMO and application of artificial intelligence are two main driving forces for next generation wireless systems. This dissertation focuses on aspects of channel estimation and precoding for 3D massive MIMO systems and application of deep reinforcement learning (DRL) for MIMO broadcast beam synthesis. To be specific, downlink (DL) precoding and power allocation strategies are identified for a time-division-duplex (TDD) multi-cell multi-user massive FD-MIMO network. Utilizing channel reciprocity, DL channel state information (CSI) feedback is eliminated and the DL multi-user MIMO precoding is linked to the uplink (UL) direction of arrival (DoA) estimation through estimation of signal parameters via rotational invariance technique (ESPRIT). Assuming non-orthogonal/non-ideal spreading sequences of the UL pilots, the performance of the UL DoA estimation is analytically characterized and the characterized DoA estimation error is incorporated into the corresponding DL precoding and power allocation strategy. Simulation results verify the accuracy of our analytical characterization of the DoA estimation and demonstrate that the introduced multi-user MIMO precoding and power allocation strategy outperforms existing zero-forcing based massive MIMO strategies.
In 3D massive MIMO systems, especially in TDD mode, a BS relies on the uplink sounding signals from mobile stations to obtain the spatial information for downlink MIMO processing. Accordingly, multi-dimensional parameter estimation of MIMO channel becomes crucial for such systems to realize the predicted capacity gains. In this work, we also study the joint estimation of elevation and azimuth angles as well as the delay parameters for 3D massive MIMO orthogonal frequency division multiplexing (OFDM) systems under a parametric channel modeling. We introduce a matrix-based joint parameter estimation method, and analytically characterize its performance for massive MIMO OFDM systems. Results show that antenna array configuration at the BS plays a critical role in determining the underlying channel estimation performance, and the characterized MSEs match well with the simulated ones. Also, the joint parametric channel estimation outperforms the MMSE-based channel estimation in terms of the correlation between the estimated channel and the real channel. Beamforming in MIMO systems is one of the key technologies for modern wireless communication. Creating wide common beams are essential for enhancing the coverage of cellular network and for improving the broadcast operation for control signals. However, in order to maximize the coverage, patterns for broadcast beams need to be adapted based on the users' movement over time. In this dissertation, we present a MIMO broadcast beam optimization framework using deep reinforcement learning. Our proposed solution can autonomously and dynamically adapt the MIMO broadcast beam parameters based on user' distribution in the network. Extensive simulation results show that the introduced algorithm can achieve the optimal coverage, and converge to the oracle solution for both single cell and multiple cell environment and for both periodic and Markov mobility patterns.
|
2 |
Specifické metody detekce anomálií v bezdrátových komunikačních sítích / Specific anomaly detection methods in wireless communication networksHolasová, Eva January 2020 (has links)
The diploma thesis is focuses on technologies and security of the wireless networks in standard IEEE 802.11, describes the most used standards, definition of physical layer, MAC layer and specific technologies for wireless networks. The diploma thesis is focused on description of selected security protocols, their technologies as well as weaknesses. Also, in the thesis, there are described security threats and vectors of attacks towards wireless networks 802.11. Selected threats were simulated in established experimental network, for these threats were designed detection methods. For testing and implementing designed detection methods, IDS system Zeek is used together with network scripts written in programming language Python. In the end there were trained and tested models of machine learning both supervised and unsupervised machine learning.
|
3 |
Towards Building a High-Performance Intelligent Radio Network through Deep Learning: Addressing Data Privacy, Adversarial Robustness, Network Structure, and Latency Requirements.Abu Shafin Moham Mahdee Jameel (18424200) 26 April 2024 (has links)
<p dir="ltr">With the increasing availability of inexpensive computing power in wireless radio network nodes, machine learning based models are being deployed in operations that traditionally relied on rule-based or statistical methods. Contemporary high bandwidth networks enable easy availability of significant amounts of training data in a comparatively short time, aiding in the development of better deep learning models. Specialized deep learning models developed for wireless networks have been shown to consistently outperform traditional methods in a variety of wireless network applications.</p><p><br></p><p dir="ltr">We aim to address some of the unique challenges inherent in the wireless radio communication domain. Firstly, as data is transmitted over the air, data privacy and adversarial attacks pose heightened risks. Secondly, due to the volume of data and the time-sensitive nature of the processing that is required, the speed of the machine learning model becomes a significant factor, often necessitating operation within a latency constraint. Thirdly, the impact of diverse and time-varying wireless environments means that any machine learning model also needs to be generalizable. The increasing computing power present in wireless nodes provides an opportunity to offload some of the deep learning to the edge, which also impacts data privacy.</p><p><br></p><p dir="ltr">Towards this goal, we work on deep learning methods that operate along different aspects of a wireless network—on network packets, error prediction, modulation classification, and channel estimation—and are able to operate within the latency constraint, while simultaneously providing better privacy and security. After proposing solutions that work in a traditional centralized learning environment, we explore edge learning paradigms where the learning happens in distributed nodes.</p>
|
Page generated in 0.0965 seconds